Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Biochemistry Experiments Biochemistry Science Fair Projects Resources Biology Jokes Warning!

    K-12 Experiments & Background Information
    For Science Labs, Lesson Plans, Class Activities & Science Fair Projects
    For Middle and High School Students and Teachers

    Antibody Experiments

    Antibody Background Information


    Antibodies are gamma globulin proteins that are found in blood or other bodily fluids of vertebrates, and are used by the immune system to identify and neutralize foreign objects, such as bacteria and viruses.


    See also: Antigens

    Antibodies (also called Immunoglobulins (Ig)) are special proteins. They are found in the blood or other body fluids of vertebrates. The immune system uses antibodies to identify foreign objects, such as bacteria and viruses. These objects are then neutralized, so that they can no longer cause problems and diseases.

    Each antibody is different. They are all designed to attack only one kind of virus or bacteria. For instance, an antibody designed to destroy smallpox are unable to hit the Bubonic plauge or the common cold. An antibody resembles the letter "Y". At the two ends of the "Y" are specially shaped antigens that can only insert themselves in one type of germ. This is needed, because every antibody is different. When the antibody finds the germ it's after, it "knows" because of its special antigen. If the antibody can insert its antigen into the germ, it will go to work either destroying it by blocking it from "germ food" (cells), or calling white blood cells to eat it, thereby killing whatever it was after.

    It is the job of the "humoral" section of the immune system to make antibodies.

    Antibodies can be found almost anywhere in the blood. If a doctor were to look at one, he or she would call it a globulin, because that is what it is shaped like.

    Antibodies are also made by special "B Cells" in the immune system. B cells only attack when their antibodies tell them to. Once alerted, the B cell goes to work, breaking germs down into nothing but harmless goo. In some cases, a B cell can't do it alone. When that happens, a T helper cell is called in to help.

    Topics of Interest

    Antibodies are gamma globulin proteins that are found in blood or other bodily fluids of vertebrates, and are used by the immune system to identify and neutralize foreign objects, such as bacteria and viruses. They are typically made of basic structural units—each with two large heavy chains and two small light chains—to form, for example, monomers with one unit, dimers with two units or pentamers with five units. Antibodies are produced by a kind of white blood cell called a plasma cell. There are several different types of antibody heavy chains, and several different kinds of antibodies, which are grouped into different isotypes based on which heavy chain they possess. Five different antibody isotypes are known in mammals, which perform different roles, and help direct the appropriate immune response for each different type of foreign object they encounter.

    Though the general structure of all antibodies is very similar, a small region at the tip of the protein is extremely variable, allowing millions of antibodies with slightly different tip structures, or antigen binding sites, to exist. This region is known as the hypervariable region. Each of these variants can bind to a different target, known as an antigen. This huge diversity of antibodies allows the immune system to recognize an equally wide diversity of antigens. The unique part of the antigen recognized by an antibody is called an epitope. These epitopes bind with their antibody in a highly specific interaction, called induced fit, that allows antibodies to identify and bind only their unique antigen in the midst of the millions of different molecules that make up an organism. Recognition of an antigen by an antibody tags it for attack by other parts of the immune system. Antibodies can also neutralize targets directly by, for example, binding to a part of a pathogen that it needs to cause an infection

    The large and diverse population of antibodies is generated by random combinations of a set of gene segments that encode different antigen binding sites (or paratopes), followed by random mutations in this area of the antibody gene, which create further diversity. Antibody genes also re-organize in a process called class switching that changes the base of the heavy chain to another, creating a different isotype of the antibody that retains the antigen specific variable region. This allows a single antibody to be used by several different parts of the immune system. Production of antibodies is the main function of the humoral immune system.

    Surface immunoglobulin (Ig) is attached to the membrane of the effector B cells by its transmembrane region, while antibodies are the secreted form of Ig and lack the trans membrane region so that antibodies can be secreted into the bloodstream and body cavities. As a result, surface Ig and antibodies are identical except for the transmembrane regions. Therefore, they are considered two forms of antibodies: soluble form or membrane-bound form.

    Isotypes: Antibodies can come in different varieties known as isotypes or classes. In placental mammals there are five antibody isotypes known as IgA, IgD, IgE, IgG and IgM. They are each named with an "Ig" prefix that stands for immunoglobulin, another name for antibody, and differ in their biological properties, functional locations and ability to deal with different antigens, as depicted in the table.

    Antibodies are heavy (~150kDa) globular plasma proteins.

    The immunoglobulin heavy chain is the large polypeptide subunit of an antibody. A typical antibody is composed of two immunoglobulin (Ig) heavy chains and two Ig light chains. Several different types of heavy chain exist that define the class or isotype of an antibody. These heavy chain types vary between different animals. All heavy chains contain a series of immunoglobulin domains, usually with one variable (IgV) domain that is important for binding antigen and several constant (IgC) domains.

    A immunoglobulin light chain is the small polypeptide subunit of an antibody (or immunoglobulin). A typical antibody is composed of two immunoglobulin (Ig) heavy chains and two Ig light chains.

    An immune system is a system of biological structures and processes within an organism that protects against disease by identifying and killing pathogens and tumour cells. It detects a wide variety of agents, from viruses to parasitic worms, and needs to distinguish them from the organism's own healthy cells and tissues in order to function properly. Detection is complicated as pathogens can evolve rapidly, producing adaptations that avoid the immune system and allow the pathogens to successfully infect their hosts.

    Virtually all microbes can trigger an antibody response. Successful recognition and eradication of many different types of microbes requires diversity among antibodies; their amino acid composition varies allowing them to interact with many different antigens. It has been estimated that humans generate about 10 billion different antibodies, each capable of binding a distinct epitope of an antigen. Although a huge repertoire of different antibodies is generated in a single individual, the number of genes available to make these proteins is limited. Several complex genetic mechanisms have evolved that allow vertebrate B cells to generate a diverse pool of antibodies from a relatively small number of antibody genes.

    Disease diagnosis and therapy: Detection of particular antibodies is a very common form of medical diagnostics, and applications such as serology depend on these methods. For example, in biochemical assays for disease diagnosis, a titer of antibodies directed against Epstein-Barr virus or Lyme disease is estimated from the blood. If those antibodies are not present, either the person is not infected, or the infection occurred a very long time ago, and the B cells generating these specific antibodies have naturally decayed. In clinical immunology, levels of individual classes of immunoglobulins are measured by nephelometry (or turbidimetry) to characterize the antibody profile of patient. Elevations in different classes of immunoglobulins are sometimes useful in determining the cause of liver damage in patients whom the diagnosis is unclear. For example, elevated IgA indicates alcoholic cirrhosis, elevated IgM indicates viral hepatitis and primary biliary cirrhosis, while IgG is elevated in viral hepatitis, autoimmune hepatitis and cirrhosis. Autoimmune disorders can often be traced to antibodies that bind the body's own epitopes; many can be detected through blood tests. Antibodies directed against red blood cell surface antigens in immune mediated hemolytic anemia are detected with the Coombs test. The Coombs test is also used for antibody screening in blood transfusion preparation and also for antibody screening in antenatal women. Practically, several immunodiagnostic methods based on detection of complex antigen-antibody are used to diagnose infectious diseases, for example ELISA, immunofluorescence, Western blot, immunodiffusion, immunoelectrophoresis, and Magnetic immunoassay. Antibodies raised against Human chorionic gonadotropin are used in over the counter pregnancy tests. Targeted monoclonal antibody therapy is employed to treat diseases such as rheumatoid arthritis, multiple sclerosis, psoriasis, and many forms of cancer including non-Hodgkin's lymphoma, colorectal cancer, head and neck cancer and breast cancer. Some immune deficiencies, such as X-linked agammaglobulinemia and hypogammaglobulinemia, result in partial or complete lack of antibodies. These diseases are often treated by inducing a short term form of immunity called passive immunity. Passive immunity is achieved through the transfer of ready-made antibodies in the form of human or animal serum, pooled immunoglobulin or monoclonal antibodies, into the affected individual.

    History: The first use of the term "antibody" occurred in a text by Paul Ehrlich. The term antikörper (the German word for antibody) appears in the conclusion of his article "Experimental Studies on Immunity", published in October 1891, which states that "if two substances give rise to two different antikörper, then they themselves must be different". However, the term was not accepted immediately and several other terms for antibody were proposed.

    The study of antibodies began in 1890 when Emil von Behring and Shibasaburo Kitasato described antibody activity against diphtheria and tetanus toxins. Behring and Kitasato put forward the theory of humoral immunity, proposing that a mediator in serum could react with a foreign antigen.

    In the 1920s, Michael Heidelberger and Oswald Avery observed that antigens could be precipitated by antibodies and went on to show that antibodies were made of protein.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Biochemistry Resources
    Biochemistry and Cell Biology Science Fair Projects and Experiments
    General Science Fair Projects Resources
    Biology / Biochemistry Science Fair Projects Books


    My Dog Kelly

    Follow Us On:

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:

    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin