Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Botany Experiments Botany Science Fair Projects Photosynthesis Fair Projects Warning!
       

    Algae
    K-12 Experiments & Background Information
    For Science Labs, Lesson Plans, Class Activities & Science Fair Projects
    For Elementary, Middle and High School Students & Teachers







    Algae Experiments

    Algae Background Information

    Definition

    Algae (Latin for "seaweed") are a large and diverse group of simple, typically autotrophic organisms, ranging from unicellular to multicellular forms. The largest and most complex marine forms are called seaweeds. They are photosynthetic, like plants, and "simple" because they lack the many distinct organs found in land plants.

    Basics

    Algae (one Alga, several Algae) is the name for certain plant-like living things that can make food from sunlight (photosynthesis). The study of algae is called phycology or algology.

    Algae are a large and diverse group of simple, typically autotrophic organisms, ranging from unicellular to multicellular forms. The largest and most complex marine forms are called seaweeds. They are photosynthetic, like plants, and "simple" because they lack the many distinct organs found in land plants. For that reason they are not classified as plants.

    Though the prokaryotic Cyanobacteria (formerly referred to as blue-green algae) were included as "Algae" in older textbooks, this is outdated. The term Algae is now used for eukaryotic organisms. All true algae therefore have a nucleus enclosed within a membrane and chloroplasts bound in one or more membranes. However, algae are definitely not a monophyletic group, as they do not all descend from a common algal ancestor. Modern taxonomists propose splitting them up into monophyletic groups, but there is at present no consensus as to the details.

    Algae lack the various structures that characterize land plants, such as leaves, roots, and other organs that are found in plants. Nearly all algae have photosynthetic machinery ultimately derived from the cyanobacteria, and so produce oxygen as a by-product of photosynthesis, unlike other photosynthetic bacteria such as purple and green bacteria. Some unicellular species rely entirely on external energy sources and have limited or no photosynthetic apparatus.

    Fossilized filamentous algae from the Vindhya basin have been dated back to 1.6 to 1.7 billion years ago.

    Ecology: Algae are usually found in damp places or water, and are common on land as well as water. However, terrestrial algae are usually rather inconspicuous and are far more common in moist, tropical regions than dry ones. Algae lack vascular tissues and other adaptations to live on land, but they can endure dryness and other conditions in symbiosis with a fungus as lichen.

    The various sorts of algae play significant roles in aquatic ecology. Microscopic forms that live suspended in the water column are called phytoplankton. They provide the food base for most marine food chains. Kelp grows mostly in shallow marine waters. Some are used as human food or harvested for agar or fertilizer. Kelp can grow in large stands called kelp forests. These forests prevent some of the damage from waves. Many different species live in them, including sea urchins, sea otters, and abalone.

    Some algae may harm other species. Some algae may reproduce a lot, and make an algal bloom. These algae may produce protective toxins which can kill fish in the water. Dinoflagellates secrete a compound that turns the flesh of fish into slime. The algae then consume this nutritious liquid.

    Symbiosis: Algae have evolved a number of symbiotic partnerships with other organisms. The most famous is the plant-like lichen, which are each formed by a fungus with an alga. It is a highly successful life-form, and twenty thousand 'species' are known. In all cases the lichen are quite different in appearance and life-style from either constituent; it is possibly the most complete symbiosis known. Both constituents gain from their access to niches with low nutrient value, which is where lichen are found.

    Less well known are the algal relationships with animals. Reef-building corals are basically social Cnidarian polyps. Corals are dependent on light, because the algae are important partners, and they require light. Corals have evolved structures, often tree-like, which offer the algae maximum access to light. The coral weakens the algal cell walls, and digests about 80% of the food synthesised by the algae. The corals' waste-products provide nutrients for the algae so, as with lichen, both partners gain from the association. The algae are golden-brown flagellate algae, often of the genus Symbiodinium. A curious feature of the partnership is that the coral may eject the algae in hard times, and regain them later. The ejection of the algal partner is called bleaching, because the coral loses its colour.

    Other types of Cnideria, such as sea anemones and jellyfish, also contain algae. Jellyfish with algae behave so that their partners get the best light during the day, and descend to depths at night, where the water is rich in nitrates and brown with decay. Sea slugs and clams are also well-known for harbouring algae. Both groups are molluscs. The sea slugs graze on coral, and are the same colour as the coral they graze. They are able to separate the algae from the polyp tissues they digest. The algal cells are moved to its tentacles, where they continue to live. The otherwise defenceless slug gains both camouflage and nurtrition. The giant clam keps algae in its mantle, which is revealed when the clam is open. The coloured mantle has places where the skin is transparent, and acts like a lens to concentrate light on the algae beneath. When the algae get too numerous, the clam digests them.

    Various other marine invertebrate groups have members which symbiont with algae. Flatworms (Platyhelminths) and Polychaete worms (Annelids) are two such groups.

    Topics of Interest

    Algae (Latin for "seaweed") are a large and diverse group of simple, typically autotrophic organisms, ranging from unicellular to multicellular forms. The largest and most complex marine forms are called seaweeds. They are photosynthetic, like plants, and "simple" because they lack the many distinct organs found in land plants.

    Though the prokaryotic Cyanobacteria (commonly referred to as Blue-green Algae) were traditionally included as "Algae" in older textbooks, many modern sources regard this as outdated they are now considereed to be closely related to bacteria. The term Algae is now restricted to eukaryotic organisms. All true algae therefore have a nucleus enclosed within a membrane and chloroplasts bound in one or more membranes. Algae constitute a paraphyletic and polyphyletic group, as they do not include all the descendants of the last universal ancestor nor do they all descend from a common algal ancestor, although their chloroplasts seem to have a single origin.

    Algae lack the various structures that characterize land plants, such as phyllids (leaves) and rhizoids in nonvascular plants, or leaves, roots, and other organs that are found in tracheophytes (vascular plants). Many are photoautotrophic, although some groups contain members that are mixotrophic, deriving energy both from photosynthesis and uptake of organic carbon either by osmotrophy, myzotrophy, or phagotrophy. Some unicellular species rely entirely on external energy sources and have limited or no photosynthetic apparatus.

    Nearly all algae have photosynthetic machinery ultimately derived from the Cyanobacteria, and so produce oxygen as a by-product of photosynthesis, unlike other photosynthetic bacteria such as purple and green sulfur bacteria. Fossilized filamentous algae from the Vindhya basin have been dated back to 1.6 to 1.7 billion years ago.

    The first alga to have its genome sequenced was Cyanidioschyzon merolae.

    Classification: While Cyanobacteria (blue-green algae) have been traditionally included among the Algae, recent works usually exclude them due to large differences such as the lack of membrane-bound organelles, the presence of a single circular chromosome, the presence of peptidoglycan in the cell walls, and ribosomes different in size and content from those of the Eukaryotes. Rather than in chloroplasts, they conduct photosynthesis on specialized infolded cytoplasmic membranes called thylakoid membranes. Therefore, they differ significantly from the Algae despite occupying similar ecological niches.

    By modern definitions Algae are Eukaryotes and conduct photosynthesis within membrane-bound organelles called chloroplasts. Chloroplasts contain circular DNA and are similar in structure to Cyanobacteria, presumably representing reduced cyanobacterial endosymbionts. The exact nature of the chloroplasts is different among the different lines of Algae, reflecting different endosymbiotic events. The table below describes the composition of the three major groups of Algae. Their lineage relationships are shown in the figure in the upper right. Many of these groups contain some members that are no longer photosynthetic. Some retain plastids, but not chloroplasts, while others have lost plastids entirely.

    Although corals can catch small fish and animals such as plankton using stinging cells on their tentacles, these animals obtain most of their nutrients from photosynthetic unicellular algae called zooxanthellae. Consequently, most corals depend on sunlight and grow in clear and shallow water, typically at depths shallower than 60 metres (200 ft). These corals can be major contributors to the physical structure of the coral reefs that develop in tropical and subtropical waters, such as the enormous Great Barrier Reef off the coast of Queensland, Australia.

    Globally, coral reefs are under threat from climate change, ocean acidification, blast fishing, overuse of reef resources, and harmful land-use practices. High nutrient levels such as those found in runoff from agricultural areas can harm reefs by encouraging excess algae growth.

    Life-cycle: Rhodophyta, Chlorophyta and Heterokontophyta, the three main algal Phyla, have life-cycles which show tremendous variation with considerable complexity. In general there is an asexual phase where the seaweed's cells are diploid, a sexual phase where the cells are haploid followed by fusion of the male and female gametes. Asexual reproduction is advantageous in that it permits efficient population increases, but less variation is possible. Sexual reproduction allows more variation, but is more costly. Often there is no strict alternation between the sporophyte and also because there is often an asexual phase, which could include the fragmentation of the thallus.

    The topic of distribution of algal species has been fairly well studied since the founding of phytogeography in the mid-19th century AD. Algae spread mainly by the dispersal of spores analogously to the dispersal of Plantae by seeds and spores. Spores are everywhere in all parts of the Earth: the waters fresh and marine, the atmosphere, free-floating and in precipitation or mixed with dust, the humus and in other organisms, such as humans. Whether a spore is to grow into an organism depends on the combination of the species and the environmental conditions.

    Locations: Phytoplankton, Lake ChuzenjiAlgae are prominent in bodies of water, common in terrestrial environments and are found in unusual environments, such as on snow and on ice. Seaweeds grow mostly in shallow marine waters, under 100 metres (330 ft); however some have been recorded to a depth of 360 metres (1,200 ft).

    The various sorts of algae play significant roles in aquatic ecology. Microscopic forms that live suspended in the water column (phytoplankton) provide the food base for most marine food chains. In very high densities (algal blooms) these algae may discolor the water and outcompete, poison, or asphyxiate other life forms.

    Algae are variously sensitive to different factors, which has made them useful as biological indicators in the Ballantine Scale and its modification.

    Uses: Agar, alginates, energy source, fertilizers, nutrition, pollution control, pigments, stabilizing substances.

    Algae fuel, also called algal fuel, oilgae, algaeoleum or third-generation biofuel, is a biofuel which is derived from algae. During photosynthesis, algae and other photosynthetic organisms capture carbon dioxide and sunlight and convert it into oxygen and biomass. Up to 99% of the carbon dioxide in solution can be converted, which was shown by Weissman and Tillett (1992) in large-scale open-pond systems. As of 2008, such fuels remain too expensive to replace other commercially available fuels, with the cost of various algae species typically between US$5–10 per kilogram. But several companies and government agencies are funding efforts to reduce capital and operating costs and make algae oil production commercially viable. The production of biofuels from algae does not reduce atmospheric carbon dioxide (CO2), because any CO2 taken out of the atmosphere by the algae is returned when the biofuels are burned. They do however eliminate the introduction of new CO2 by displacing fossil hydrocarbon fuels.

    The green algae (singular: green alga) are the large group of algae from which the embryophytes (higher plants) emerged. As such, they form a paraphyletic group, although the group including both green algae and embryophytes is monophyletic (and often just known as kingdom Plantae). The green algae include unicellular and colonial flagellates, usually but not always with two flagella per cell, as well as various colonial, coccoid, and filamentous forms. In the Charales, the closest relatives of higher plants, full differentiation of tissues occurs. There are about 6,000 species of green algae. Many species live most of their lives as single cells, while other species form colonies or long filaments.

    An algal bloom is a rapid increase or accumulation in the population of algae in an aquatic system. Algal blooms may occur in freshwater as well as marine environments. Typically, only one or a small number of phytoplankton species are involved, and some blooms may be recognized by discoloration of the water resulting from the high density of pigmented cells. Although there is no officially recognized threshold level, algae can be considered to be blooming at concentrations of hundreds to thousands of cells per milliliter, depending on the severity. Algal bloom concentrations may reach millions of cells per milliliter. Algal blooms are often green, but they can also be other colors such as yellow-brown or red, depending on the species of algae.

    Algaculture is a form of aquaculture involving the farming of species of algae.

    Biological hydrogen production is a method of photobiological water splitting which done in a closed photobioreactor based on the production of hydrogen by algae. Algae produce hydrogen under certain conditions. In 2000 it was discovered that if C. reinhardtii algae are deprived of sulfur they will switch from the production of oxygen, as in normal photosynthesis, to the production of hydrogen.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Botany and Agriculture Science Fair Projects and Experiments
    General Science Fair Project Resources
    Botany Science Fair Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin