Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Botany Experiments Botany Science Fair Projects Photosynthesis Fair Projects Warning!
       

    Worm Compost & Vermicomposting
    K-12 Experiments & Background Information
    For Science Labs, Lesson Plans, Class Activities & Science Fair Projects
    For Elementary, Middle and High School Students & Teachers







    Vermicompost Experiments

    Vermicompost Background Information

    Definition

    Vermicompost is the product or process of composting utilizing various species of worms.

    Topics of Interest

    The main worm species utilized for composting are red wigglers, white worms, and earthworms creating the heterogeneous mixture of decomposing vegetable or food waste, bedding materials, and pure vermicast produced during the course of normal vermiculture operations. Vermicast, similarly known as worm castings, worm humus or worm manure, is the end-product of the breakdown of organic matter by the species of earthworm.

    Containing water-soluble nutrients and bacteria, vermicompost is an excellent, nutrient-rich organic fertilizer and soil conditioner. The process of producing vermicompost is called vermicomposting.

    Suitable worm species: The earthworm species (or composting worms) most often used are Red Wigglers (Eisenia foetida or Eisenia andrei), but European nightcrawlers (Eisenia hortensis) may also be used. European nightcrawlers are called by a variety of other names, including dendrobaenas, dendras, and Belgian nightcrawlers.

    Blueworms (Perionyx excavatus) may be used in the tropics. However, P. excavatus worms are not suitable for worm compost bins in most of the contiguous United States.

    These species are commonly found in organic-rich soils throughout Europe and North America and live in rotting vegetation, compost, and manure piles. They may be invasive species in some areas. As they are shallow-dwelling and feed on decomposing plant matter in the soil, they adapt easily to living on food or plant waste in the confines of a worm bin.

    Composting worms are available to order online, from nursery mail-order suppliers or angling (fishing) shops where they are sold as bait. They can also be collected from compost and manure piles. These species are not the same worms that are found in ordinary soil or on pavement when the soil is flooded by water.

    Large-scale vermicomposting is practised in Canada, Italy, Japan, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, to create compost tea, or for sale. Some of these operations produce worms for bait and/or home vermicomposting.

    There are two main methods of large-scale vermiculture. Some systems use a windrow, which consists of bedding materials for the earthworms to live in and acts as a large bin; organic material is added to it. Although the windrow has no physical barriers to prevent worms from escaping, in theory they should not due to an abundance of organic matter for them to feed on. Often windrows are used on a concrete surface to prevent predators from gaining access to the worm population.

    The second type of large-scale vermicomposting system is the raised bed or flow-through system. Here the worms are fed an inch of "worm chow" across the top of the bed, and an inch of castings are harvested from below by pulling a breaker bar across the large mesh screen which forms the base of the bed.

    Because red worms are surface-dwellers constantly moving towards the new food source, the flow-through system eliminates the need to separate worms from the castings before packaging. Flow-through systems are well suited to indoor facilities, making them the preferred choice for operations in colder climates.

    Small scale vermicomposting: For vermicomposting at home, a large variety of bins are commercially available, or a variety of adapted containers may be used. They may be made of old plastic containers, wood, Styrofoam, or metal containers. The design of a small bin usually depends on where an individual wishes to store the bin and how they wish to feed the worms.

    Some materials are less desirable than others in worm bin construction. Metal containers often conduct heat too readily, are prone to rusting, and may release heavy metals into the vermicompost. Some cedars, Yellow cedar, and Redwood contain resinous oils that may harm worms, although Western Red Cedar has excellent longevity in composting conditions. Hemlock is another inexpensive and fairly rot-resistant wood species that may be used to build worm bins.

    Bins need holes or mesh for aeration, and a spout or holes in the bottom for excess liquid to drain into a tray for collection. Worm compost bins made from recycled or semi-recycled plastic are ideal, but require more drainage than wooden ones because they are non-absorbent. However, wooden bins will eventually decay and need to be replaced.

    Small-scale vermicomposting is well-suited to turn kitchen waste into high-quality soil amendments, where space is limited. Worms can decompose organic matter without the additional human physical effort (turning the bin) that bin composting requires.

    Composting worms which are detritivorous (eaters of trash), such as the red wiggler, Eisenia fetidae are epigeic (surface dwellers) together with symbiotic associated microbes are the ideal vectors for decomposing food waste. Common earthworms, such as Lumbricus terrestris are anecic(deep burrowing) species and hence unsuitable for use in a closed system. Other soil species that contribute include insects, other worms and molds.

    Climate and temperature: The most common worms used in composting systems, redworms (Eisenia foetida, Eisenia andrei, and Lumbricus rubellus) feed most rapidly at temperatures of 1525 C (59-77 F). They can survive at 10 C (50 F). Temperatures above 30 C (86 F) may harm them. This temperature range means that indoor vermicomposting with redworms is suitable in all but tropical climates. (Other worms like Perionyx excavatus are suitable for warmer climates.) If a worm bin is kept outside, it should be placed in a sheltered position away from direct sunlight and insulated against frost in winter. It is necessary to monitor the temperatures of large-scale bin systems (which can have high heat-retentive properties), as the feedstocks used can compost, heating up the worm bins as they decay and killing the worms.

    Harvesting: Worms in a bin being harvestedVermicompost is ready for harvest when it contains few-to-no scraps of uneaten food or bedding. There are several methods of harvesting from small-scale systems: "dump and hand sort", "let the worms do the sorting", "alternate containers" and "divide and dump." These differ on the amount of time and labor involved and whether the vermicomposter wants to save as many worms as possible from being trapped in the harvested compost. While harvesting, it's also a good idea to try to pick out as many eggs/cocoons as possible and return them to the bin. Eggs are small, lemon-shaped yellowish things that can usually be picked out pretty easily with the naked eye.

    Properties: Vermicompost has been shown to be richer in many nutrients than compost produced by other composting methods. It also has outperformed a commercial plant medium with nutrients added, but needed adjustment for magnesium and pH. However, other studies have shown that the effects of home made, backyard, vermicompost compared to municipal compost were lower in terms of soil microbial biomass, soil microbial activity, and yields of a species of ryegrass. Further, one study concluded that the differences between methods of composting were in large part due to the feedstock, and therefore no generalizations can be made between composts made from varying materials. It is rich in microbial life which converts nutrients already present in the soil into plant-available forms. Unlike other compost, worm castings also contain worm mucus which helps prevent nutrients from washing away with the first watering and holds moisture better than plain soil .

    Troubleshooting:

    Smells: When closed, a well-maintained bin is odorless; when opened, it should have little smell - if any, the smell is earthy. Worms require gaseous oxygen. Oxygen can be provided by airholes in the bin, occasional stirring of bin contents, and removal of some bin contents if they become too deep or too wet. If decomposition becomes anaerobic from excess feedstock added to the bin in wet conditions; or layers of food waste have become too deep, the bin will begin to smell like ammonia.

    Moisture: If decomposition has become anaerobic, to restore healthy conditions and prevent the worms from dying, the smelly, excess waste water must be removed and the bin returned to a normal moisture level. To do this, first reduce addition of food scraps with a high moisture content and second, add fresh, dry bedding such as shredded newspaper to your bin, mixing it in well.

    Pest species: Pests such as rodents and flies are attracted by certain materials and odors, usually from large amounts of kitchen waste, particularly meat. By eliminating the use of meat or dairy product in your worm bin you decrease the possibility of pests. In warm weather, fruit and vinegar flies breed in the bins if fruit and vegetable waste is not thoroughly covered with bedding. This problem can be avoided by thoroughly covering the waste by at least 2 inches of bedding. Maintaining the correct pH (close to netural) and water content of the bin (just enough water where squeezed bedding drips a couple of drops) can help avoid these pests as well.

    Worms escaping: Having worms escape is one of the most feared outcomes for many new vermicomposters. Worms generally stay in the bin, but may try to leave the bin when first introduced, or often after a rainstorm when outside humidity is high. Maintaining adequate conditions in the worm bin and putting a light over the bin when first introducing worms should eliminate this problem.

    Nutrient levels: Commercial vermicomposters test, and may amend their products to produce consistent quality and results. Because the small-scale and home systems use a varied mix of feedstocks, the nitrogen, potassium and phosphorus content of the resulting vermicompost will also be inconsistent. NPK testing may be helpful before the vermicompost or tea is applied to the garden. In order to avoid over-fertilization issues, such as nitrogen burn, vermicompost can be diluted as a tea 50:50 with water, or as a solid can be mixed in 50:50 with potting soil. Some sources claim that the mucus creates a natural time release fertilizer which cannot burn plants.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Botany and Agriculture Science Fair Projects and Experiments
    General Science Fair Project Resources
    Botany Science Fair Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright 2003-2013 Julian Rubin