Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Computer Experiments Computer Science Fair Projects Computer Jokes Warning!

    Intelligent Transportation System (ITS) & Automotive Telematics
    Experiments, Studies and Background Information


    • Improving Traffic Flow and Reducing CO2 Emissions [View Experiment]
    • Mobile Phone Location Determination and Its Impact on Intelligent Transportation Systems [View Experiment]
    • Making Use of Information and Telecommunications Technology to Improve the Traffic Environment [View Experiment]
    • Integrating Smartdust into Intelligent Transportation Systems [View Experiment]
    • Influence of Unexpected Events On. Driving Behaviour At Different. Hierarchical Levels: A Driving Experiment [View Experiment]
    • Innovation in Automotive Telematics Services: Characteristics of the Field and Management Principles [View Experiment]
    • Driver distraction from in-vehicle telematics devices: The public opinion. [View Experiment]
    • Thesis: Secure Mobile Device Integration for Automotive Telematics [View Experiment]
    Background Information


    Intelligent transportation system (ITS) refers to efforts to add information and communications technology to transport infrastructure and vehicles in an effort to manage factors that typically are at odds with each other, such as vehicles, loads, and routes to improve safety and reduce vehicle wear, transportation times, and fuel consumption.

    Automotive telematics is the use of Global Positioning System (GPS) technology integrated with computers and mobile communications technology in automotive navigation systems.


    Interest in ITS comes from the problems caused by traffic congestion and a synergy of new information technology for simulation, real-time control, and communications networks. Traffic congestion has been increasing worldwide as a result of increased motorization, urbanization, population growth, and changes in population density. Congestion reduces efficiency of transportation infrastructure and increases travel time, air pollution, and fuel consumption.

    The United States, for example, saw large increases in both motorization and urbanization starting in the 1920s that led to migration of the population from the sparsely populated rural areas and the densely packed urban areas into suburbs. The industrial economy replaced the agricultural economy, leading the population to move from rural locations into urban centers. At the same time, motorization was causing cities to expand because motorized transportation could not support the population density that the existing mass transit systems could. Suburbs provided a reasonable compromise between population density and access to a wide variety of employment, goods, and services that were available in the more densely populated urban centers. Further, suburban infrastructure could be built quickly, supporting a rapid transition from a rural/agricultural economy to an industrial/urban economy.

    Recent governmental activity in the area of ITS – specifically in the United States – is further motivated by the perceived need for homeland security. Many of the proposed ITS systems also involve surveillance of the roadways, which is a priority of homeland security. Funding of many systems comes either directly through homeland security organizations or with their approval. Further, ITS can play a role in the rapid mass evacuation of people in urban centers after large casualty events such as a result of a natural disaster or threat. Much of the infrastructure and planning involved with ITS parallels the need for homeland security systems.

    In the developing world, the migration of people from rural to urbanized habitats has progressed differently. Many areas of the developing world have urbanized without significant motorization and the formation of suburbs. In areas like Santiago, Chile, a high population density is supported by a multimodal system of walking, bicycle transportation, motorcycles, buses, and trains. A small portion of the population can afford automobiles, but the automobiles greatly increase the congestion in these multimodal transportation systems. They also produce a considerable amount of air pollution, pose a significant safety risk, and exacerbate feelings of inequities in the society.

    Other parts of the developing world, such as China, remain largely rural but are rapidly urbanizing and industrializing. In these areas a motorized infrastructure is being developed alongside motorization of the population. Great disparity of wealth means that only a fraction of the population can motorize, and therefore the highly dense multimodal transportation system for the poor is cross-cut by the highly motorized transportation system for the rich. The urban infrastructure is being rapidly developed, providing an opportunity to build new systems that incorporate ITS at early stages.

    Intelligent transportation technologies

    Intelligent transportation systems vary in technologies applied, from basic management systems such as car navigation; traffic signal control systems; container management systems; variable message signs; automatic number plate recognition or speed cameras to monitor applications, such as security CCTV systems; and to more advanced applications that integrate live data and feedback from a number of other sources, such as parking guidance and information systems; weather information; bridge deicing systems; and the like. Additionally, predictive techniques are being developed in order to allow advanced modeling and comparison with historical baseline data. Some of the constituent technologies typically implemented in ITS are described in the following sections.

    Various forms of wireless communications technologies have been proposed for intelligent transportation systems. Radio modem communication on UHF and VHF frequencies are widely used for short and long range communication within ITS.

    Recent advances in vehicle electronics have led to a move toward fewer, more capable computer processors on a vehicle. A typical vehicle in the early 2000s would have between 20 and 100 individual networked microcontroller/Programmable logic controller modules with non-real-time operating systems. The current trend is toward fewer, more costly microprocessor modules with hardware memory management and Real-Time Operating Systems. The new embedded system platforms allow for more sophisticated software applications to be implemented, including model-based process control, artificial intelligence, and ubiquitous computing. Perhaps the most important of these for Intelligent Transportation Systems is artificial intelligence.

    Floating car data: Virtually every car contains one or more mobile phones. These mobile phones routinely transmit their location information to the network – even when no voice connection is established. This allows them to be used as anonymous traffic probes. As the car moves, so does the signal of the mobile phone. By measuring and analyzing network data, using triangulation, pattern matching or cell-sector statistics – in an anonymous format – the data is converted into accurate traffic flow information. With more congestion, there are more cars, more phones, and thus, more probes. In metropolitan areas, the distance between antennas is shorter and, thus, accuracy increases. No infrastructure needs to be built along the road; only the mobile phone network is leveraged. In some metropolitan areas, RFID (Radio-Frequency IDentification) signals from ETC transponders are used. Floating car data technology provides great advantages over existing methods of traffic measurement:

    • much less expensive than sensors or cameras
    • more coverage: all locations and streets
    • faster to set up (no work zones) and less maintenance
    • works in all weather conditions, including heavy rain

    Sensing technologies: Technological advances in telecommunications and information technology coupled with state-of-the-art microchip, RFID, and inexpensive intelligent beacon sensing technologies have enhanced the technical capabilities that will facilitate motorist safety benefits for Intelligent transportation systems globally. Sensing systems for ITS are vehicle and infrastructure based networked systems, e.g., Intelligent vehicle technologies. Infrastructure sensors are indestructible (such as in-road reflectors) devices that are installed or embedded on the road, or surrounding the road (buildings, posts, and signs for example) as required and may be manually disseminated during preventive road construction maintenance or by sensor injection machinery for rapid deployment of the embedded radio frequency powered (or RFID) in-ground road sensors. Vehicle-sensing systems include deployment of infrastructure-to-vehicle and vehicle-to-infrastructure electronic beacons for identification communications and may also employ the benefits of CCTV automatic number plate recognition technology at desired intervals in order to increase sustained monitoring of suspect vehicles operating in critical zones.

    Inductive loops (an electromagnetic communication and detection system, relying on the fact that a moving magnet will induce a electrical current in a nearby conducting wire) can be placed in a roadbed to detect vehicles as they pass over the loop by measuring the vehicle's magnetic field. The simplest detectors simply count the number of vehicles during a unit of time (typically 60 seconds in the United States) that pass over the loop, while more sophisticated sensors estimate the speed, length, and weight of vehicles and the distance between them. Loops can be placed in a single lane or across multiple lanes, and they work with very slow or stopped vehicles as well as vehicles moving at high-speed.

    Video vehicle detection: Traffic flow measurement and automatic incident detection using video cameras is another form of vehicle detection. Since video detection systems such as those used in automatic number plate recognition do not involve installing any components directly into the road surface or roadbed, this type of system is known as a "non-intrusive" method of traffic detection. Video from black-and-white or color cameras is fed into processors that analyze the changing characteristics of the video image as vehicles pass. The cameras are typically mounted on poles or structures above or adjacent to the roadway. Most video detection systems require some initial configuration to "teach" the processor the baseline background image. This usually involves inputting known measurements such as the distance between lane lines or the height of the camera above the roadway. A single video detection processor can detect traffic simultaneously from one to eight cameras, depending on the brand and model. The typical output from a video detection system is lane-by-lane vehicle speeds, counts, and lane occupancy readings. Some systems provide additional outputs including gap, headway, stopped-vehicle detection, and wrong-way vehicle alarms.

    Intelligent transportation applications

    Electronic toll collection (ETC), an adaptation of military "identification friend or foe" technology, aims to eliminate the delay on toll roads by collecting tolls electronically. It is thus a technological implementation of a road pricing concept. It determines whether the cars passing are enrolled in the program, alerts enforcers for those that are not, and electronically debits the accounts of registered car owners without requiring them to stop.

    Emergency vehicle notification systems: The in-vehicle eCall is an emergency call generated either manually by the vehicle occupants or automatically via activation of in-vehicle sensors after an accident. When activated, the in-vehicle eCall device will establish an emergency call carrying both voice and data directly to the nearest emergency point (normally the nearest E1-1-2 Public-safety answering point, PSAP). The voice call enables the vehicle occupant to communicate with the trained eCall operator. At the same time, a minimum set of data will be sent to the eCall operator receiving the voice call.

    Congestion pricing or congestion charges is a system of surcharging users of a transport network in periods of peak demand to reduce traffic congestion. Examples include some toll-like road pricing fees, and higher peak charges for utilities, public transport and slots in canals and airports. This variable pricing strategy regulates demand, making it possible to manage congestion without increasing supply. Market economics theory, which encompasses the congestion pricing concept, postulates that users will be forced to pay for the negative externalities they create, making them conscious of the costs they impose upon each other when consuming during the peak demand, and more aware of their impact on the environment.

    A traffic enforcement camera is a system, including a camera and a vehicle-monitoring device, used to detect and identify vehicles disobeying a speed limit or some other road legal requirement.

    Collision avoidance systems: Japan has installed sensors on its highways to notify motorists that a car is stalled ahead.

    Dynamic Traffic Light Sequence: Intelligent RFID traffic control has been developed for dynamic traffic light sequence. It has circumvented or avoided the problems that usually arise with systems such as those, which use image processing and beam interruption techniques. RFID technology with appropriate algorithm and database were applied to a multi vehicle, multi lane and multi road junction area to provide an efficient time management scheme. A dynamic time schedule was worked out for the passage of each column. The simulation has shown that, the dynamic sequence algorithm has the ability to intelligently adjust itself even with the presence of some extreme cases. The real time operation of the system able to emulate the judgment of a traffic policeman on duty, by considering the number of vehicles in each column and the routing proprieties.

    Automotive telematics is the use of Global Positioning System (GPS) technology integrated with computers and mobile communications technology in automotive navigation systems.

    Practical applications of vehicle telematics

    Vehicle tracking is a way of monitoring the location, movements, status and behaviour of a vehicle or fleet of vehicles. This is achieved through a combination of a GPS(GNSS) receiver and an electronic device (usually comprising a GSM GPRS modem or SMS sender) installed in each vehicle, communicating with the user and PC- or web-based software.

    Trailer tracking is the technology of tracking the movements and position of an articulated vehicle's trailer unit, through the use of a location unit fitted to the trailer and a method of returning the position data via mobile communication network or geostationary satellite communications, for use through either PC- or web-based software.

    Cold store freight trailers logistics that are used to deliver fresh or frozen foods are increasingly incorporating telematics to gather time-series data on the temperature inside the cargo container, both to trigger alarms and record an audit trail for business purposes. An increasingly sophisticated array of sensors, many incorporating RFID technology, are being used to ensure that temperature throughout the cargo remains within food-safety parameters.

    Fleet management is the management of a company's vehicle fleet. Fleet management includes the management of ships and or motor vehicles such as cars, vans and trucks. Fleet (vehicle) Management can include a range of Fleet Management functions, such as vehicle financing, vehicle maintenance, vehicle telematics (tracking and diagnostics), driver management, fuel management and health & safety management. Fleet Management is a function which allows companies which rely on transportation in their business to remove or minimize the risks associated with vehicle investment, improving efficiency, productivity and reducing their overall transportation costs, providing 100% compliancy with government legislation and Duty of Care obligations.

    Satellite navigation in the context of vehicle telematics is the technology of using a GPS and electronic mapping tool to enable the driver of a vehicle to locate a position, then route plan and navigate a journey.

    Wireless vehicle safety communications telematics aid in car safety and road safety. It is an electronic sub-system in a car or other vehicle for the purpose of exchanging safety information, about such things as road hazards and the locations and speeds of vehicles, over short range radio links. This may involve temporary ad hoc wireless local area networks.

    Emergency warning system for vehicles: Telematics technologies are self-orientating open network architecture structure of variable programmable intelligent beacons developed for application in the development of intelligent vehicles — with target intent to accord (blend, or mesh) warning information with surrounding vehicles in the vicinity of travel, intra-vehicle, and infrastructure. Emergency warning system for vehicles telematics particularly developed for international harmonisation and standardisation of vehicle-to-vehicle — infrastructure-to-vehicle — and vehicle-to-infrastructure real-time Dedicated Short Range Communication (DSRC) systems.

    Intelligent Vehicle Technologies: telematics comprise electronic, electromechanical, and electromagnetic devices - usually silicon micromachined components operating in conjunction with computer controlled devices and radio transceivers to provide precision repeatability functions (such as in robotics artificial intelligence systems) emergency warning validation performance reconstruction.

    Telematics technology has allowed car clubs to emerge, such as City Car Club in the UK. Telematics-enabled computers allow organisers to track members' usage and bill them on a pay-as-you-drive.

    The basic idea of telematic auto insurance is that a driver's behavior is monitored directly while the person drives and this information is transmitted to an insurance company. The insurance company then assesses the risk of that driver having an accident and charges insurance premiums accordingly. A driver who drives long distance at high speed, for example, will be charged a higher rate than a driver who drives short distances at slower speeds.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Computer Science and Engineering Science Fair Projects and Experiments
    General Science Fair Project Resources
    Electronics & Computer Project Books


    My Dog Kelly

    Follow Us On:

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:

    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin