Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Electricity Experiments Electronics Experiments Electricity Projects Electronics Projects Warning!
       

    Compass Building Instructions
    K-12 Experiments & Background Information
    For Science Labs, Lesson Plans, Class Activities, Homework Help & Science Fair Projects
    For Primary, Elementary, Middle and High School Students and Teachers







    Compass Experiments

    Compass Background Information

    Definition

    A compass is a navigational instrument for determining direction relative to the Earth's magnetic poles. It consists of a magnetized pointer (usually marked on the North end) free to align itself with Earth's magnetic field.

    Basics

    The compass greatly improved the safety and efficiency of travel, especially ocean travel. A compass can be used to calculate heading, used with a sextant to calculate latitude, and with a marine chronometer to calculate longitude. It thus provides a much improved navigational capability that has only been recently supplanted by modern devices such as the Global Positioning System (GPS). A compass is any magnetically sensitive device capable of indicating the direction of the magnetic north of a planet's magnetosphere. The face of the compass generally highlights the cardinal points of north, south, east and west. Often, compasses are built as a stand alone sealed instrument with a magnetized bar or needle turning freely upon a pivot, or moving in a fluid, thus able to point in a northerly and southerly direction. The compass was invented in ancient China sometime before the 2nd century, and was used for navigation by the 11th century. The dry compass was invented in medieval Europe around 1300. This was supplanted in the early 20th century by the liquid-filled magnetic compass.

    Other, more accurate, devices have been invented for determining north that do not depend on the Earth's magnetic field for operation (known in such cases as true north, as opposed to magnetic north). A gyrocompass or astrocompass can be used to find true north, while being unaffected by stray magnetic fields, nearby electrical power circuits or nearby masses of ferrous metals. A recent development is the electronic compass, or fibre optic gyrocompass, which detects the magnetic directions without potentially fallible moving parts. This device frequently appears as an optional subsystem built into GPS receivers. However, magnetic compasses remain popular, especially in remote areas, as they are cheap, durable, and require no electrical power supply.

    History of the Compass

    Navigation prior to the compass: Prior to the introduction of the compass, position, destination, and direction at sea was primarily determined by the sighting of landmarks, supplemented with the observation of the position of celestial bodies. Ancient mariners often kept within sight of land. The invention of the compass enabled the determination of heading when the sky was overcast or foggy. And, when the sun or other known celestial bodies could be observed, it enabled the calculation of latitude. This enabled mariners to navigate safely far from land, increasing sea trade, and contributing to the Age of Discovery

    Olmec artifact: Based on his find of an Olmec hematite artifact in Mesoamerica, radiocarbon dated to 1400-1000 BC, astronomer John Carlson has suggested that the Olmec might have discovered and used the geomagnetic lodestone compass earlier than 1000 BC. If true, this "predates the Chinese discovery of the geomagnetic lodestone compass by more than a millennium". Carlson speculates that the Olmecs used similar artifacts as a directional device for astrological or geomantic purposes. The artifact is part of a polished lodestone bar with a groove at one end (possibly for sighting). The artifact now consistently points 35.5 degrees west of north, but may have pointed north-south when whole. Other researchers have suggested that the artifact is actually a constituent piece of a decorative ornament. No other hematite artifacts have been found.

    China: The earliest Chinese compasses were probably not designed for navigation, but rather to order and harmonize their environments and buildings in accordance with the geomantic principles of feng shui. These early compasses were made using lodestone, a special form of the mineral magnetite that aligns itself with the Earth’s magnetic field. The earliest reference to a specific magnetic direction finder device is recorded in a Song Dynasty book dated to 1040-44. There is a description of an iron "south-pointing fish" floating in a bowl of water, aligning itself to the south. The device is recommended as a means of orientation "in the obscurity of the night."

    Medieval Europe: In 1187 Alexander Neckam reported the use of a magnetic compass for the region of the English Channel.

    Islamic world: The earliest reference to an iron fish-like compass in the Islamic world occurs in a Persian talebook from 1232. The earliest Arabic reference to a compass - in the form of magnetic needle in a bowl of water - comes from the Yemeni sultan and astronomer Al-Ashraf in 1282. He also appears to be the first to make use of the compass for astronomical purposes. Since the author describes having witnessed the use of a compass on a ship trip some forty years earlier, some scholars are inclined to antedate its first appearance in the Arab world accordingly.

    The compass was used in India for navigational purposes and was known as the matsya yantra, due to the placement of a metallic fish in a cup of oil. It may have been introduced from the Middle East, or along sea trade routes between India and China. It was of great importance in the establishment of maritime, trade, cultural, and eventually political links between India and South East Asia.

    Later compass developments

    Dry compass: The dry mariner's compass was invented in Europe around 1300. The dry mariner's compass consists of three elements: A freely pivoting needle on a pin enclosed in a little box with a glass cover and a wind rose, whereby "the wind rose or compass card is attached to a magnetized needle in such a manner that when placed on a pivot in a box fastened in line with the keel of the ship the card would turn as the ship changed direction, indicating always what course the ship was on". Later, compasses were often fitted into a gimbal mounting to reduce grounding of the needle or card when used on the pitching and rolling deck of a ship.

    A bearing compass is a magnetic compass mounted in such a way that it allows the taking of bearings of objects by aligning them with the lubber line of the bearing compass. A surveyor's compass is a specialized compass made to accurately measure heading of landmarks and measure horizontal angles to help with map making. These were already in common use by the early 18th century and are described in the 1728 Cyclopaedia. The bearing compass was steadily reduced in size and weight to increase portability, resulting in a model that could be carried and operated in one hand. In 1885, a patent was granted for a hand compass fitted with a viewing prism and lens that enabled the user to accurately sight the heading of geographical landmarks, thus creating the prismatic compass. Another sighting method was by means of a reflective mirror. First patented in 1902, the Bézard compass consisted of a field compass with a mirror mounted above it. This arrangement enabled the user to align the compass with an objective while simultaneously viewing its bearing in the mirror.

    The liquid compass is a design in which the magnetized needle or card is damped by fluid to protect against excessive swing or wobble, improving readability while reducing wear. A rudimentary working model of a liquid compass was introduced by Sir Edmund Halley at a meeting of the Royal Society in 1690. However, as early liquid compasses were fairly cumbersome and heavy, and subject to damage, their main advantage was aboard ship. Protected in a binnacle and normally gimbal-mounted, the liquid inside the compass housing effectively damped shock and vibration, while eliminating excessive swing and grounding of the card caused by the pitch and roll of the vessel. The first liquid mariner's compass believed practicable for limited use was patented by the Englishman Francis Crow in 1813. Liquid-damped marine compasses for ships and small boats were occasionally used by the British Royal Navy from the 1830s through 1860, but the standard Admiralty compass remained a dry-mount type. In the latter year, the American physicist and inventor Edward Samuel Ritchie patented a greatly improved liquid marine compass that was adopted in revised form for general use by the U.S. Navy, and later purchased by the Royal Navy as well.

    Non-navigational uses of a compass

    Building orientation: Evidence for the orientation of buildings by the means of a magnetic compass can be found in 12th century Denmark: one fourth of its 570 Romanesque churches are rotated by 5-15 degrees clockwise from true east-west, thus corresponding to the predominant magnetic declination of the time of their construction. Most of these churches were built in the 12th century, indicating a fairly common usage of magnetic compasses in Europe by then.

    Mining: The use of a compass as a direction finder underground was pioneered by the Tuscan mining town Massa where floating magnetic needles were employed for determining tunneling and defining the claims of the various mining companies as early as the 13th century. In the second half of the 15th century, the compass became standard equipment for Tyrolian miners. Shortly afterwards the first detailed treatise dealing with the underground use of compasses was published by a German miner Rülein von Calw (1463–1525).

    Astronomy: Three astronomical compasses meant for establishing the meridian were described by Peter Peregrinus in 1269 (referring to experiments made before 1248) In 1300, an Arabic treatise written by the Egyptian astronomer and muezzin Ibn Simʿūn describes a dry compass for use as a "Qibla indicator" to find the direction to Mecca. Ibn Simʿūn's compass, however, did not feature a compass card nor the familiar glass box. In the 14th century, the Syrian astronomer and timekeeper Ibn al-Shatir (1304–1375) invented a compass dial, a timekeeping device incorporating both a universal sundial and a magnetic compass. He invented it for the purpose of finding the direction to Mecca and the times of Salah prayers at the Umayyad Mosque. Arab navigators also introduced the 32-point compass rose during this time.

    Limitations of the Compass

    The compass is very stable in areas close to the equator, which is far from "Magnetic North". As the compass is moved closer and closer to one of the Magnetic Poles of the Earth, the compass becomes more sensitive to crossing the magetic field lines of the Earth. At some point close to the Magnetic Pole the compass will not indicate any particular direction but will begin to drift in a non direction indicating manner. Also, the needle starts to point up or down when getting closer to the poles, due to the so-called magnetic inclination. Cheap compasses with bad bearings may get stuck due to this and therefore indicate a wrong direction.

    A compass is also subject to errors when the compass is accelerated or decelerated in an airplane or automobile. Depending on which of the Earth's hemispheres the compass is located and if the force is acceleration or deceleration the compass will increase the indicated heading or decrease the indicated heading.

    Another error of the compass is turning error. When one turns from a heading of East or West the compass will lag behind the turn or lead ahead of the turn.

    Using a compass

    A magnetic compass points to magnetic North pole, which is approximately 1,000 miles from the true geographic North Pole. A magnetic compass's user can determine true North by finding the magnetic North and then correcting for variation and deviation. Variation is defined as the angle between the direction of true (geographic) north and the direction of the meridian between the magnetic poles. Variation values for most of the oceans had been calculated and published by 1914. Deviation refers to the response of the compass to local magnetic fields caused by the presence of iron and electric currents; one can partly compensate for these by careful location of the compass and the placement of compensating magnets under the compass itself. Mariners have long known that these measures do not completely cancel deviation; hence, they performed an additional step by measuring the compass bearing of a landmark with a known magnetic bearing. They then pointed their ship to the next compass point and measured again, graphing their results. In this way, correction tables could be created, which would be consulted when compasses were used when traveling in those locations.

    Construction of a simple compass

    A magnetic rod is required when constructing a compass. This can be created by aligning an iron or steel rod with Earth's magnetic field and then tempering or striking it. However, this method produces only a weak magnet so other methods are preferred. This magnetised rod (or magnetic needle) is then placed on a low friction surface to allow it to freely pivot to align itself with the magnetic field. It is then labeled so the user can distinguish the north-pointing from the south-pointing end; in modern convention the north end is typically marked in some way, often by being painted red.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Science Fair Projects Resources [Resource]
    Electrical Safety [Resource] [Resource]
    Electricity Science Fair Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin