Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Electricity Experiments Electronics Experiments Electricity Projects Electronics Projects Warning!
       

    Electric Power Transmission & Distribution
    Experiments, Studies and Background Information
    For Science Labs, Lesson Plans, Class Activities, Homework Help & Science Fair Projects
    For Middle School, High School and College Students and Teachers







    Experiments

    Electric Power Transmission & Distribution

    Definitions

    Electric power transmission is the process of the delivery of electricity from the power plant to a substation near a populated area.

    Electricity distribution is the delivery of electricity from the power substation to end users.

    Basics

    See also Electricity Generation

    Electric power transmission, a process in the delivery of electricity to consumers, is the bulk transfer of electrical power. Typically, power transmission is between the power plant and a substation near a populated area. Electricity distribution is the delivery from the substation to the consumers. Electric power transmission allows distant energy sources (such as hydroelectric power plants) to be connected to consumers in population centers, and may allow exploitation of low-grade fuel resources that would otherwise be too costly to transport to generating facilities.

    Due to the large amount of power involved, transmission normally takes place at high voltage (110 kV or above). Electricity is usually transmitted over long distance through overhead power transmission lines. Underground power transmission is used only in densely populated areas due to its high cost of installation and maintenance, and because the high reactive power produces large charging currents and difficulties in voltage management.

    A power transmission system is sometimes referred to colloquially as a "grid"; however, for reasons of economy, the network is not a mathematical grid. Redundant paths and lines are provided so that power can be routed from any power plant to any load center, through a variety of routes, based on the economics of the transmission path and the cost of power. Much analysis is done by transmission companies to determine the maximum reliable capacity of each line, which, due to system stability considerations, may be less than the physical or thermal limit of the line. Deregulation of electricity companies in many countries has led to renewed interest in reliable economic design of transmission networks.

    AC power transmission

    AC power transmission is the transmission of electric power by alternating current. Usually transmission lines use three phase AC current. In electric railways, single phase AC current is sometimes used in a railway electrification system. In urban areas, trains may be powered by DC at 600 volts or so.

    Overhead conductors are not covered by insulation. The conductor material is nearly always an aluminum alloy, made into several strands and possibly reinforced with steel strands. Conductors are a commodity supplied by several companies worldwide. Improved conductor material and shapes are regularly used to allow increased capacity and modernize transmission circuits. Conductor sizes in overhead transmission work range in size from #6 American wire gauge (about 12 square millimetres) to 1,590,000 circular mils area (about 750 square millimetres), with varying resistance and current-carrying capacity. Thicker wires would lead to a relatively small increase in capacity due to the skin effect, that causes most of the current to flow close to the surface of the wire.

    Today, transmission-level voltages are usually considered to be 110 kV and above. Lower voltages such as 69 kV and 33 kV are usually considered sub-transmission voltages but are occasionally used on long lines with light loads. Voltages less than 33 kV are usually used for distribution. Voltages above 230 kV are considered extra high voltage and require different designs compared to equipment used at lower voltages.

    Overhead transmission lines are uninsulated wire, so design of these lines requires minimum clearances to be observed to maintain safety.

    In the early days of commercial use of electric power, transmission of electric power at the same voltage as used by lighting and mechanical loads restricted the distance between generating plant and consumers. Originally generation was with direct current, which could not easily be increased in voltage for long-distance transmission. Different classes of loads, for example, lighting, fixed motors, and traction (railway) systems, required different voltages and so used different generators and circuits.

    At an AIEE meeting on May 16, 1888, Nikola Tesla delivered a lecture entitled A New System of Alternating Current Motors and Transformers, describing the equipment which allowed efficient generation and use of alternating currents. Tesla's disclosures, in the form of patents, lectures and technical articles, are useful for understanding the history of the modern system of power transmission. Ownership of the rights to the Tesla patents was a key commercial advantage to the Westinghouse Company in offering a complete alternating current power system for both lighting and power.

    Bulk power transmission

    Engineers design transmission networks to transport the energy as efficiently as feasible, while at the same time taking into account economic factors, network safety and redundancy. These networks use components such as power lines, cables, circuit breakers, switches and transformers.

    A transmission substation decreases the voltage of electricity coming in allowing it to connect from long distance, high voltage transmission, to local, lower voltage, distribution. It also rerouts power to other transmission lines that serve local markets. The substation may also "reboost" power allowing it to travel greater distances from the power generation source along the high voltage transmission lines.This is the Pacific Corporation Hale Substation, Orem, Utah.Transmission efficiency is improved by increasing the voltage using a step-up transformer, which reduces the current in the conductors, while keeping the power transmitted nearly equal to the power input. The reduced current flowing through the conductor reduces the losses in the conductor and since, according to Joule's Law, the losses are proportional to the square of the current, halving the current makes the transmission loss one quarter the original value.

    A transmission grid is a network of power stations, transmission circuits, and substations. Energy is usually transmitted within the grid with three-phase AC. DC systems require relatively costly conversion equipment which may be economically justified for particular projects. Single phase AC is used only for distribution to end users since it is not usable for large polyphase induction motors. In the 19th century two-phase transmission was used, but required either three wires with unequal currents or four wires. Higher order phase systems require more than three wires, but deliver marginal benefits.

    The capital cost of electric power stations is so high, and electric demand is so variable, that it is often cheaper to import some portion of the variable load than to generate it locally. Because nearby loads are often correlated (hot weather in the Southwest portion of the United States might cause many people there to turn on their air conditioners), imported electricity must often come from far away. Because of the economics of load balancing, transmission grids now span across countries and even large portions of continents. The web of interconnections between power producers and consumers ensures that power can flow even if a few links are inoperative.

    The unvarying (or slowly varying over many hours) portion of the electric demand is known as the "base load", and is generally served best by large facilities (and therefore efficient due to economies of scale) with low variable costs for fuel and operations, i.e. nuclear, coal, and renewables like hydro, solar, wind, ocean, etc.. Smaller- and higher-cost sources are then added as needed.

    Long-distance transmission of electricity (thousands of miles) is cheap and efficient, with costs of US$ 0.005 to 0.02 per kilowatt-hour (compared to annual averaged large producer costs of US$ 0.01 to US$ 0.025 per kilowatt-hour, retail rates upwards of US$ 0.10 per kilowatt-hour, and multiples of retail for instantaneous suppliers at unpredicted highest demand moments).[6] Thus distant suppliers can be cheaper than local sources (e.g. New York City buys a lot of electricity from Canada). Multiple local sources (even if more expensive and infrequently used) can make the transmission grid more fault tolerant to weather and other disasters that can disconnect distant suppliers.

    Getting renewables connected into the long-distance transmission grid is critical for energy self-sufficiency. Hydro and wind sources can't be moved closer to high population cities, and solar costs are lowest in remote areas where local power needs are the least. Connection costs alone can determine whether any particular renewable alternative is economically sensible, e.g. costs can be prohibitive for redundant transmission lines up to distant mountain ridges where enormous quantities of economically valuable high speed winds blow reliably.

    Communications

    Operators of long transmission lines require reliable communications for control of the power grid and, often, associated generation and distribution facilities. Fault-sensing protection relays at each end of the line must communicate to monitor the flow of power into and out of the protected line section so that faulted conductors or equipment can be quickly de-energized and the balance of the system restored. Protection of the transmission line from short circuits and other faults is usually so critical that common carrier telecommunications are insufficiently reliable. In remote areas a common carrier may not be available at all. Communication systems associated with a transmission project may use:

    • Microwaves
    • Power line communication
    • Optical fibers

    Rarely, and for short distances, a utility will use pilot-wires strung along the transmission line path. Leased circuits from common carriers are not preferred since availability is not under control of the electric power transmission organization.

    Transmission lines can also be used to carry data: this is called power-line carrier, or PLC. PLC signals can be easily received with a radio for the long wave range.

    Optical fibers can be included in the stranded conductors of a transmission line, in the overhead shield wires. These cables are known as OPGW or Optical Ground Wire. Sometimes a standalone cable is used, ADSS or All Dielectric Self Supporting cable, attached to the transmission line cross arms.

    110 kV double circuit power line of EnBW AG near Leonberg, Germany with an aerial cable mounted like a garland on the ground conductorSome jurisdictions, such as Minnesota, prohibit energy transmission companies from selling surplus communication bandwidth or acting as a telecommunications common carrier. Where the regulatory structure permits, the utility can sell capacity in extra "dark fibers" to a common carrier, providing another revenue stream for the line.

    Superconducting cables

    High-temperature superconductors promise to revolutionize power distribution by providing lossless transmission of electrical power. The development of superconductors with transition temperatures higher than the boiling boint of liquid nitrogen has made the concept of superconducting power lines commercially feasible, at least for high-load applications. [21] It has been estimated that the waste would be halved using this method, since the necessary refrigeration equipment would consume about half the power saved by the elimination of the majority of resistive losses. Such cables are particularly suited to high load density areas such as the business district of large cities, where purchase of a wayleave for cables would be very costly. [6]

    Wireless power transmission

    Every radio transmitter emits power wirelessly. For example, the operation of a crystal radio is powered by the radio station it is tuned to, however the energetic efficiency is extremely low.

    Small scale wireless power was demonstrated as early as 1831 by Michael Faraday and by 1888 Heinrich Rudolf Hertz had proven that natural radio waves exist and can be captured.

    Both Nikola Tesla and Hidetsugu Yagi attempted to devise systems for large scale wireless power transmission. Tesla succeeded,[22][23][24][25][26] but his investors saw no way they could profit from it because the consumption could not be controlled for billing and so not only refused to fund construction of larger transmitters but had the existing ones dismantled. Yagi also proposed a similar concept, but the engineering problems proved to be more onerous than conventional systems. His work, however, led to the invention of the Yagi antenna.

    Another form of wireless power transmission has been studied for transmission of power from solar power satellites to the earth. A high power array of microwave transmitters would beam power to a rectenna. Major engineering and economic challenges face any solar power satellite project.

    Health concerns

    Some research has found that exposure to elevated levels of ELF magnetic fields such as those originating from electric power transmission lines may be implicated in a number of adverse health effects. These include, but are not limited to, childhood leukemia [8], adult leukemia[9], breast cancer[10], neurodegenerative diseases (such as amyotrophic lateral sclerosis)[11][12][13], Miscarriage[14][15][16], and clinical depression. Although there seems to be a small statistical correlation between various diseases and living near power lines, the physical mechanism is not clear. One proposed mechanism is that the electric fields around power lines attract aerosol pollutants.[17][18]

    One possible response to the potential dangers of overhead power lines is to place them underground. According to the British Stakeholder Advisory Group on ELF EMFs[19], the cost of burying cables at transmission voltages costs is around GBP 10M/km, compared to GBP 0.5-1M/km for overhead lines.

    Underground cables eliminate the electric field and reduce the width over which the magnetic field is elevated.[20] However, in reality, protection from the dangers of electromagnetic (EM) fields is seldom the driving concern when burying power lines.

    The strongest evidence linking EMF to cancer was fabricated. Most people, when quizzed, have heard of the link between EMF's and cancer, but relatively few people have heard of the fabricated data leaving a public perception that power lines are far more dangerous than they are.


    Electricity distribution is the penultimate stage in the delivery (before retail) of electricity to end users. It is generally considered to include medium-voltage (less than 50 kV) power lines, electrical substations and pole-mounted transformers, low-voltage (less than 1000 V) distribution wiring and sometimes electricity meters.

    See also Electricity Generation

    In the early days of electricity distribution, direct current DC generators were connected to loads at the same voltage. The generation, transmission and loads had to be of the same voltage because there was no way of changing DC voltage levels, other than inefficient motor-generator sets. Low DC voltages were used (on the order of 100 volts) since that was a practical voltage for incandescent lamps, which were then the primary electrical load. The low voltage also required less insulation to be safely distributed within buildings.

    The losses in a cable are proportional to the square of the current, the length of the cable, and the resistivity of the material, and are inversely proportional to cross-sectional area. Early transmission networks were already using copper, which is one of the best economically feasible conductors for this application. To reduce the current and copper required for a given quantity of power transmitted would require a higher transmission voltage, but no convenient efficient method existed to change the voltage level of DC power circuits. To keep losses to an economically practical level the Edison DC system needed thick cables and local generators. Early DC generating plants needed to be within about 1.5 miles of the farthest customer to avoid the need for excessively large and expensive conductors.

    Introduction of alternating current

    The adoption of alternating current (AC) for electricity generation following the War of Currents dramatically changed the situation. Power transformers, installed at power stations, could be used to raise the voltage from the generators and transformers at local substations reduced it to supply loads. Increasing the voltage reduced the current in the transmission and distribution lines and hence the size of conductors required and distribution losses incurred. This made it more economical to distribute power over long distances. Generators (such as hydroelectric sites) could be located far from the loads.

    Distribution network configurations

    Distribution networks are typically of two types, radial or interconnected (see Spot Network Substations). A radial network leaves the station and passes through the network area with no normal connection to any other supply. This is typical of long rural lines with isolated load areas. An interconnected network is generally found in more urban areas and will have multiple connections to other points of supply.

    These points of connection are normally open but allow various configurations by the operating utility by closing and opening switches. Operation of these switches may be by remote control from a control centre or by a lineman. The benefit of the interconnected model is that in the event of a fault or required maintenance a small area of network can be isolated and the remainder kept on supply.

    Within these networks there may be a mix of overhead line construction utilizing traditional utility poles and wires and, increasingly, underground construction with cables and indoor or cabinet substations. However, underground distribution is significantly more expensive than overhead construction. In part to reduce this cost, underground power lines are sometimes co-located with other utility lines in what are called Common utility ducts. Distribution feeders emanating from a substation are generally controlled by a circuit breaker which will open when a fault is detected. Automatic Circuit Reclosers may be installed to further segregate the feeder thus minimising the impact of faults.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Science Fair Projects Resources [Resource]
    Electrical Safety [Resource] [Resource]
    Electricity Science Fair Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright 2003-2013 Julian Rubin