Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Electricity Experiments Electronics Experiments Electricity Projects Electronics Projects Warning!
       

    Reed Switch
    K-12 Experiments, Projects & Background Information
    For Science Labs, Lesson Plans, Class Activities, Homework Help & Science Fair Projects
    For Elementary, Middle and High School Students and Teachers







    Reed Switch Experiments

    Reed Switch Background Information

    Definition

    The reed switch is an electrical switch operated by an applied magnetic field. It consists of a pair of contacts on ferrous metal reeds in a hermetically sealed glass envelope. The contacts may be closing and opening when a magnetic field is applied.

    Basics

    The reed switch is an electrical switch operated by an applied magnetic field. It was invented at Bell Telephone Laboratories in 1936 by W. B. Ellwood. It consists of a pair of contacts on ferrous metal reeds in a hermetically sealed glass envelope. The contacts may be normally open, closing when a magnetic field is present, or normally closed and opening when a magnetic field is applied. The switch may be actuated by a coil, making a reed relay, or by bringing a magnet near to the switch. Once the magnet is pulled away from the switch, the reed switch will go back to its original position.

    An example of a reed switch's application is to detect the opening of a door, when used as a proximity switch for a burglar alarm.

    Description

    The reed switch contains a pair (or more) of magnetizable, flexible, metal reeds whose end portions are separated by a small gap when the switch is open. The reeds are hermetically sealed in opposite ends of a tubular glass envelope.

    A magnetic field (from an electromagnet or a permanent magnet) will cause the reeds to bend, and the contacts to pull together, thus completing an electrical circuit. The stiffness of the reeds causes them to separate, and open the circuit, when the magnetic field ceases. Another configuration contains a non-ferrous normally-closed contact that opens when the ferrous normally-open contact closes. Good electrical contact is assured by plating a thin layer of precious metal over the flat contact portions of the reeds; low-resistivity silver is more suitable than corrosion-resistant gold in the sealed envelope. There are also versions of reed switches with mercury "wetted" contacts. Such switches must be mounted in a particular orientation otherwise drops of mercury may bridge the contacts even when not activated.

    Since the contacts of the reed switch are sealed away from the atmosphere, they are protected against atmospheric corrosion. The hermetic sealing of a reed switch make them suitable for use in explosive atmospheres where tiny sparks from conventional switches would constitute a hazard.

    One important quality of the switch is its sensitivity, the amount of magnetic field necessary to actuate it. Sensitivity is measured in units of Ampere-turns, corresponding to the current in a coil multiplied by the number of turns. Typical pull-in sensitivities for commercial devices are in the 10 to 60 AT range. The lower the AT, the more sensitive the reed switch. Also, smaller reed switches, which have smaller parts, are more sensitive to magnetic fields, so the smaller the reed switch's glass envelope is, the more sensitive it is.

    As of February 2010, the smallest and most magnetically sensitive reed switch on the market is Hermetic Switch, Inc's HSR-0025, which is (in millimeters) 4.06 long, 1.22 wide, and 0.89 high or (in inches) 0.160 long, 0.048 wide, and 0.035 high.

    In production, a metal reed is inserted in each end of a glass tube and the end of the tube heated so that it seals around a shank portion on the reed. Infrared-absorbing glass is used, so an infrared heat source can concentrate the heat in the small sealing zone of the glass tube. The thermal coefficient of expansion of the glass material and metal parts must be similar to prevent breaking the glass-to-metal seal. The glass used must have a high electrical resistance and must not contain volatile components such as lead oxide and fluorides. The leads of the switch must be handled carefully to prevent breaking the glass envelope.

    Uses

    In addition to their use in reed relays, reed switches are widely used for electrical circuit control, particularly in the communications field. Reed switches actuated by magnets are commonly used in mechanical systems as proximity switches as well as in door and window sensors in burglar alarm systems and tamperproofing methods; however they can be disabled by a strong, external magnetic field. Reed switches were formerly used in the keyboards for computer terminals, where each key had a magnet and a reed switch actuated by depressing the key; cheaper switches are now used. Speed sensors on bicycle wheels use a reed switch to actuate briefly each time a magnet on the wheel passes the sensor.

    Electric and electronic pedal keyboards used by pipe organ and Hammond organ players often use reed switches, where the glass enclosure of the contacts protects them from dirt, dust, and other particles.

    Reed relays

    One or more reed switches inside a coil is a reed relay. Reed relays are used when operating currents are relatively low, and offer high operating speed, good performance with very small currents which are not reliably switched by conventional contacts, high reliability and long life. Millions of reed relays were used for temporarily storing information in mid-20th Century telephone exchanges. The inert atmosphere around the reed contacts ensures that oxidation will not affect the contact resistance. Mercury-wetted reed relays are sometimes used, especially in high-speed counting circuits. Reliability is compromised by contacts sticking closed either from residual magnetism or welding.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Science Fair Projects Resources [Resource]
    Electrical Safety [Resource] [Resource]
    Electricity Science Fair Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin