Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Electricity Experiments Electronics Experiments Electricity Projects Electronics Projects Warning!

    Resistor & Resistance
    K-12 Experiments & Background Information
    For Science Labs, Lesson Plans, Class Activities, Homework Help & Science Fair Projects
    For Middle and High School Students and Teachers

    Resistor & Resistance Experiments

    Resistor & Resistance Background Information


    A resistor is a two-terminal electrical or electronic component that resists an electric current by producing a voltage drop between its terminals in accordance with Ohm's law.

    Electrical resistance is a measure of how strongly a bulk of material opposes the flow of electric current.

    Electrical resistivity is a measure of how strongly a standard volume of material opposes the flow of electric current.


    See also Electrical Resistivity

    A resistor is a two-terminal electronic component that produces a voltage across its terminals that is proportional to the electric current passing through it in accordance with Ohm's law:

    V = IR

    Resistors are elements of electrical networks and electronic circuits and are ubiquitous in most electronic equipment. Practical resistors can be made of various compounds and films, as well as resistance wire (wire made of a high-resistivity alloy, such as nickel/chrome).

    The primary characteristics of a resistor are the resistance, the tolerance, maximum working voltage and the power rating. Other characteristics include temperature coefficient, noise, and inductance. Less well-known is critical resistance, the value below which power dissipation limits the maximum permitted current flow, and above which the limit is applied voltage. Critical resistance depends upon the materials constituting the resistor as well as its physical dimensions; it's determined by design.

    Resistors can be integrated into hybrid and printed circuits, as well as integrated circuits. Size, and position of leads (or terminals) are relevant to equipment designers; resistors must be physically large enough not to overheat when dissipating their power.

    The ohm (symbol: Ω) is a SI-driven unit of electrical resistance, named after Georg Simon Ohm. Commonly used multiples and submultiples in electrical and electronic usage are the milliohm (1x10−3), kilohm (1x103), and megohm (1x106).

    Series and parallel resistors

    Resistors in a parallel configuration each have the same potential difference (voltage). To find their total equivalent resistance (Req):

    A diagram of several resistors, side by side, both leads of each connected to the same wires

    The parallel property can be represented in equations by two vertical lines "||" (as in geometry) to simplify equations. For two resistors,

    The current through resistors in series stays the same, but the voltage across each resistor can be different. The sum of the potential differences (voltage) is equal to the total voltage. To find their total resistance:

    A diagram of several resistors, connected end to end, with the same amount of current going through each

    A resistor network that is a combination of parallel and series can sometimes be broken up into smaller parts that are either one or the other. For instance,

    A diagram of three resistors, two in parallel, which are in series with the other

    However, many resistor networks cannot be split up in this way. Consider a cube, each edge of which has been replaced by a resistor. For example, determining the resistance between two opposite vertices requires matrix methods for the general case. However, if all twelve resistors are equal, the corner-to-corner resistance is 56 of any one of them.

    Power dissipation

    The power dissipated by a resistor is the voltage across the resistor multiplied by the current through the resistor:

    All three equations are equivalent. The first is derived from Joule's law, and other two are derived from that by Ohm's Law.


    Carbon composition resistors consist of a solid cylindrical resistive element with embedded wire leads or metal end caps to which the lead wires are attached. The body of the resistor is protected with paint or plastic. Early 20th-century carbon composition resistors had uninsulated bodies; the lead wires were wrapped around the ends of the resistance element rod and soldered. The completed resistor was painted for color coding of its value.

    Carbon film resistors: A carbon film is deposited on an insulating substrate, and a helix cut in it to create a long, narrow resistive path. Varying shapes, coupled with the resistivity of carbon, (ranging from 90 to 400 nΩm) can provide a variety of resistances. Carbon film resistors feature a power rating range of 0.125 W to 5 W at 70 °C. Resistances available range from 1 ohm to 10 megohm. The carbon film resistor has an operating temperature range of -55 °C to 155 °C. It has 200 to 600 volts maximum working voltage range.

    Metal film resistors: A common type of axial resistor today is referred to as a metal-film resistor. Metal electrode leadless face (MELF) resistors often use the same technology, but are a cylindrically shaped resistor designed for surface mounting. Note that other types of resistors (e.g., carbon composition) are also available in MELF packages. Metal film resistors are usually coated with nickel chromium (NiCr), but might be coated with any of the cermet materials listed above for thin film resistors. Unlike thin film resistors, the material may be applied using different techniques than sputtering (though that is one such technique). Also, unlike thin-film resistors, the resistance value is determined by cutting a helix through the coating rather than by etching. (This is similar to the way carbon resistors are made.) The result is a reasonable tolerance (0.5, 1, or 2%) and a temperature coefficient of (usually) 25 or 50 ppm/K.

    Wirewound resistors are commonly made by winding a metal wire, usually nichrome, around a ceramic, plastic, or fiberglass core. The ends of the wire are soldered or welded to two caps or rings, attached to the ends of the core. The assembly is protected with a layer of paint, molded plastic, or an enamel coating baked at high temperature. Wire leads in low power wirewound resistors are usually between 0.6 and 0.8 mm in diameter and tinned for ease of soldering. For higher power wirewound resistors, either a ceramic outer case or an aluminum outer case on top of an insulating layer is used. The aluminum-cased types are designed to be attached to a heat sink to dissipate the heat; the rated power is dependent on being used with a suitable heat sink, e.g., a 50 W power rated resistor will overheat at a fraction of the power dissipation if not used with a heat sink. Large wirewound resistors may be rated for 1,000 watts or more.

    Foil resistors: The primary resistance element of a foil resistor is a special alloy foil several micrometres thick. Since their introduction in the 1960s, foil resistors have had the best precision and stability of any resistor available. One of the important parameters influencing stability is the temperature coefficient of resistance (TCR). The TCR of foil resistors is extremely low, and has been further improved over the years. One range of ultra-precision foil resistors offers a TCR of 0.14 ppm/°C, tolerance ±0.005%, long-term stability (1 year) 25 ppm, (3 year) 50 ppm (further improved 5-fold by hermetic sealing), stability under load (2000 hours) 0.03%, thermal EMF 0.1 μV/°C, noise -42 dB, voltage coefficient 0.1 ppm/V, inductance 0.08 μH, capacitance 0.5 pF.

    An ammeter shunt is a special type of current-sensing resistor, having four terminals and a value in milliohms or even micro-ohms. Current-measuring instruments, by themselves, can usually accept only limited currents. To measure high currents, the current passes through the shunt, where the voltage drop is measured and interpreted as current. A typical shunt consists of two solid metal blocks, sometimes brass, mounted on to an insulating base. Between the blocks, and soldered or brazed to them, are one or more strips of low temperature coefficient of resistance (TCR) manganin alloy. Large bolts threaded into the blocks make the current connections, while much-smaller screws provide voltage connections. Shunts are rated by full-scale current, and often have a voltage drop of 50 mV at rated current.

    Grid resistors: In heavy-duty industrial high-current applications, a grid resistor is a large convection-cooled lattice of stamped metal alloy strips connected in rows between two electrodes. Such industrial grade resistors can be as large as a refrigerator; some designs can handle over 500 amperes of current, with a range of resistances extending lower than 0.04 ohms. They are used in applications such as dynamic braking and load banking for locomotives and trams, neutral grounding for industrial AC distribution, control loads for cranes and heavy equipment, load testing of generators and harmonic filtering for electric substations.

    Negative resistors: Negative resistance is a property of some electric circuits where an increase in the current entering a port results in a decreased voltage across the same port. This is in contrast to a simple ohmic resistor, which exhibits an increase in voltage under the same conditions. Negative resistors are theoretical and do not exist as a discrete component. However, some types of diodes (e.g., tunnel diodes) can be built that exhibit negative resistance in some part of their operating range. Such a differential negative resistance is illustrated in Figure 1 with a Resonant tunneling diode. Similarly, some chalcogenide glasses and conductive polymers exhibit a similar region of negative resistance as a bulk property.

    Resistance decade boxes: A resistance decade box is a box containing resistors of many values and two (or four) terminals, with a mechanical switch that allows a resistance of any value allowed by the box to be dialed. Usually the resistance is accurate to high precision, ranging from laboratory/calibration grade accurate to within 20 parts per million, to field grade at 1%. Inexpensive boxes with lesser accuracy are also available. All types offer a convenient way of selecting and quickly changing a resistance in laboratory, experimental and development work without having to stock and seek individual resistors of the required value. The range of resistance provided, the maximum resolution, and the accuracy characterize the box. For example, one box offers resistances from 0 to 24 megohms, maximum resolution 0.1 ohm, accuracy 0.1%.

    Resistor marking

    Most axial resistors use a pattern of colored stripes to indicate resistance. Surface-mount resistors are marked numerically, if they are big enough to permit marking; more-recent small sizes are impractical to mark. Cases are usually tan, brown, blue, or green, though other colors are occasionally found such as dark red or dark gray.

    Early 20th century resistors, essentially uninsulated, were dipped in paint to cover their entire body for color coding. A second color of paint was applied to one end of the element, and a color dot (or band) in the middle provided the third digit. The rule was "body, tip, dot", providing two significant digits for value and the decimal multiplier, in that sequence. Default tolerance was ±20%. Closer-tolerance resistors had silver (±10%) or gold-colored (±5%) paint on the other end.

    Four-band resistors

    Four-band identification is the most commonly used color-coding scheme on resistors. It consists of four colored bands that are painted around the body of the resistor. The first two bands encode the first two significant digits of the resistance value, the third is a power-of-ten multiplier or number-of-zeroes, and the fourth is the tolerance accuracy, or acceptable error, of the value. The first three bands are equally spaced along the resistor; the spacing to the fourth band is wider. Sometimes a fifth band identifies the thermal coefficient, but this must be distinguished from the true 5-color system, with 3 significant digits.

    For example, green-blue-yellow-red is 56×104 Ω = 560 kΩ ± 2%. An easier description can be as followed: the first band, green, has a value of 5 and the second band, blue, has a value of 6, and is counted as 56. The third band, yellow, has a value of 104, which adds four 0's to the end, creating 560,000 Ω at ±2% tolerance accuracy. 560,000 Ω changes to 560 kΩ ±2% (as a kilo- is 103).

    Each color corresponds to a certain digit, progressing from darker to lighter colors, as shown in the chart below.

    Color 1st band 2nd band 3rd band (multiplier) 4th band (tolerance) Temp. Coefficient
    Black 0 0 ×100
    Brown 1 1 ×101 ±1% (F) 100 ppm
    Red 2 2 ×102 ±2% (G) 50 ppm
    Orange 3 3 ×103 15 ppm
    Yellow 4 4 ×104   25 ppm
    Green 5 5 ×105 ±0.5% (D)  
    Blue 6 6 ×106 ±0.25% (C)  
    Violet 7 7 ×107 ±0.1% (B)  
    Gray 8 8 ×108 ±0.05% (A)  
    White 9 9 ×109    
    Gold ×10−1 ±5% (J)
    Silver     ×10−2 ±10% (K)  
    None       ±20% (M)  

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Science Fair Projects Resources [Resource]
    Electrical Safety [Resource] [Resource]
    Electricity Science Fair Projects Books


    My Dog Kelly

    Follow Us On:

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:

    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin