Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Electronics Experiments Electronics Science Fair Projects Electronic Circuits Warning!
       

    Passive Filter vs. Active Filter
    Experiments, Circuits and Background Information
    For Science Labs & Science Fair Projects
    For High School and College Students and Teachers







    Electronic Filter Experiments

    Passive Filter vs. Active Filter

    Definitions

    A passive filter is a kind of electronic filter that is made only from passive elements in contrast to an active filter, it does not require an external power source (beyond the signal).

    An active filter is a type of analog electronic filter, distinguished by the use of one or more active components and require an external power source.

    Passive filter

    A passive filter is a kind of electronic filter that is made only from passive elements -- in contrast to an active filter, it does not require an external power source (beyond the signal). Since most filters are linear, in most cases, passive filters are composed of just the four basic linear elements -- resistors, capacitors, inductors, and transformers. More complex passive filters may involve nonlinear elements, or more complex linear elements, such as transmission lines.

    A passive filter has several advantages over an active filter:

    • Guaranteed stability
    • Passive filters scale better to large signals (tens of amps, hundreds of volts), where active devices are often impractical
    • No power consumption (aside from possibly taking some power out of the signal)
    • Cheap

    They are commonly used in speaker crossover design (due to the moderately large voltages and currents, and the lack of easy access to power), filters in power distribution networks (due to the large voltages and currents), power supply bypassing (due to low cost, and in some cases, power requirements), as well as a variety of discrete and home brew circuits (for low-cost and simplicity). Passive filters are less common in integrated circuit design, where active devices are comparatively inexpensive compared to resistors and capacitors, and inductors are prohibitively expensive.

    Active filter

    An active filter is a type of analog electronic filter, distinguished by the use of one or more active components i.e. voltage amplifiers or buffer amplifiers. Typically this will be a vacuum tube, transistor or operational amplifier.

    There are two principal reasons for the use of active filters. The first is that the amplifier powering the filter can be used to shape the filter's response, e.g., how quickly and how steeply it moves from its passband into its stopband. (To do this passively, one must use inductors, which tend to pick up surrounding electromagnetic signals and are often quite physically large.) The second is that the amplifier powering the filter can be used to buffer the filter from the electronic components it drives. This is often necessary so that they do not affect the filter's actions.

    Active filter circuit configurations (topology) include:

    There are several varieties of active filter. Some of them, also available in passive form, are:

    • High-pass filters attenuation of frequencies below their cut-off points.
    • Low-pass filters attenuation of frequencies above their cut-off points.
    • Band-pass filters attenuation of frequencies both above and below those they allow to pass.
    • Notch filters attenuation of certain frequencies while allowing all others to pass.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Electronics Science Fair Projects and Experiments
    Electronics Circuits and Schematics
    Science Fair Projects Resources
    Electronics Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright 2003-2013 Julian Rubin