Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Electronics Experiments Electronics Science Fair Projects Electronic Circuits Warning!
       

    Quartz Crystal Microbalance (QCM)
    Experiments, Labs, Studies and Background Information







    Experiments and Studies

    • Quartz Crystal Microbalance (QCM) Gravimetry Experiment [View Experiment]
    • Effect of Surface Film Structure on the Quartz Crystal Microbalance Response in Liquids [View Experiment]
    • Quartz Crystal Microbalance in Cell Biology Studies [View Experiment]
    • From Quartz Crystal Microbalance to Fundamental Principles of Mass Measurements [View Experiment]
    • Is quartz crystal microbalance really a mass sensor? [View Experiment]
    • Quartz Crystal Microbalance for On-line Investigations of Enzymatic Reactions on Dietary Proteins [View Experiment]
    • Thesis: Quartz Crystal Microbalance/ Heat Conduction Calorimetry (QCM/HCC), a new technology capable of isothermal, high sensitivity, mass and heat flow measurements at a solid/gas interface. [View Experiment]
    Quartz Crystal Microbalance (QCM)

    Definition

    A quartz crystal microbalance (QCM) is a device that measures a mass per unit area by measuring the change in frequency of a quartz crystal resonator.

    Basics

    The resonance is disturbed by the addition or removal of a small mass due to oxide growth/decay or film deposition at the surface of the acoustic resonator. The QCM can be used under vacuum, in gas phase ("gas sensor", first use described by) and more recently in liquid environments. It is useful for monitoring the rate of deposition in thin film deposition systems under vacuum. In liquid, it is highly effective at determining the affinity of molecules (proteins, in particular) to surfaces functionalized with recognition sites. Larger entities such as viruses or polymers are investigated, as well. Frequency measurements are easily made to high precision (discussed below); hence, it is easy to measure mass densities down to a level of below 1 μg/cm2. In addition to measuring the frequency, the dissipation is often measured to help analysis. The dissipation is a parameter quantifying the damping in the system, and is related to the sample's viscoelastic properties.

    Quartz is one member of a family of crystals that experience the piezoelectric effect. The piezoelectric effect has found applications in high power sources, sensors, actuators, frequency standards, motors, etc., and the relationship between applied voltage and mechanical deformation is well known; this allows probing an acoustic resonance by electrical means. Applying alternating current to the quartz crystal will induce oscillations. With an alternating current between the electrodes of a properly cut crystal, a standing shear wave is generated. The Q factor, which is the ratio of frequency and bandwidth, can be as high 106. Such a narrow resonance leads to highly stable oscillators and a high accuracy in the determination of the resonance frequency. The QCM exploits this ease and precision for sensing. Common equipment allows resolution down to 1 Hz on crystals with a fundamental resonant frequency in the 4 – 6 MHz range. A typical setup for the QCM contains water cooling tubes, the retaining unit, frequency sensing equipment through a microdot feed-through, an oscillation source, and a measurement and recording device.

    The frequency of oscillation of the quartz crystal is partially dependent on the thickness of the crystal. During normal operation, all the other influencing variables remain constant; thus a change in thickness correlates directly to a change in frequency. As mass is deposited on the surface of the crystal, the thickness increases; consequently the frequency of oscillation decreases from the initial value. With some simplifying assumptions, this frequency change can be quantified and correlated precisely to the mass change using Sauerbrey's equation. Other techniques for measuring the properties of thin films include Ellipsometry, Surface Plasmon Resonance (SPR) Spectroscopy, and Dual Polarisation Interferometry.

    Gravimetric and Non-Gravimetric QCM

    The classical sensing application of quartz crystal resonators is microgravimetry. Many commercial instruments, some of which are called thickness monitors, are available. These devices exploit the Sauerbrey relation. For thin films, the resonance frequency is – by-and-large – inversely proportional to the total thickness of the plate. The latter increases when a film is deposited onto the crystal surface. Monolayer sensitivity is easily reached. However, when the film thickness increases, viscoelastic effects come into play. In the late 80’s, it was recognized that the QCM can also be operated in liquids, if proper measures are taken to overcome the consequences of the large damping. Again, viscoelastic effects contribute strongly to the resonance properties.

    Today, microweighing is one of several uses of the QCM. Measurements of viscosity and more general, viscoelastic properties, are of much importance as well. The “non-gravimetric” QCM is by no means an alternative to the conventional QCM. Many researchers, who use quartz resonators for purposes other than gravimetry, have continued to call the quartz crystal resonator “QCM”. Actually, the term "balance" makes sense even for non-gravimetric applications if it is understood in the sense of a force balance. At resonance, the force exerted upon the crystal by the sample is balanced by a force originating from the shear gradient inside the crystal. This is the essence of the small-load approximation.

    Crystalline α–quartz is by far the most important material for thickness-shear resonators. Langasite (La3Ga5SiO14, “LGS”) and gallium-orthophosphate (GaPO4) are investigated as alternatives to quartz, mainly (but not only) for use at high temperatures. Such devices are also called “QCM”, even though they are not made out of quartz (and may or may not be used for gravimetry).

    Surface Acoustic Wave Based-Sensors

    The QCM is a member of a wider class of sensing instruments based on acoustic waves at surfaces. Instruments sharing similar principles of operation are shear horizontal surface acoustic wave (SH-SAW) devices, Love-wave devices, and torsional resonators. Surface acoustic wave-based devices make use of the fact that the reflectivity of an acoustic wave at the crystal surface depends on the impedance (the stress-to-speed ratio) of the adjacent medium. (Some acoustic sensors for temperature or pressure make use of the fact that the speed of sound inside the crystal depends on temperature, pressure, or bending. These sensors do not exploit surface effects.) In the context of surface-acoustic wave based sensing, the QCM is also termed “bulk acoustic wave resonator (BAW-resonator)” or “thickness-shear resonator”. The displacement pattern of an unloaded BAW resonator is a standing shear wave with anti-nodes at the crystal surface. This makes the analysis particularly easy and transparent

    Operation

    Resonator Crystals

    When the QCM was first developed, natural quartz was harvested, selected for its quality and then cut in the lab. However, most of today’s crystals are grown in the lab using seed crystals. The seed crystals serve as an anchoring point for crystal growth; encouraging growth in two directions and limiting growth in another. The crystals, AT or SC (discussed below) used in most applications operate in the thickness shear mode at a frequency in the 1-30 MHz range.

    Electromechanical Coupling

    The QCM consists of a thin piezoelectric plate with electrodes evaporated onto both sides. Due to the piezo-effect, an AC voltage across the electrodes induces a shear deformation and vice versa. The electromechanical coupling provides a simple way to detect an acoustic resonance by electrical means. Otherwise, it is of minor importance. However, electromechanical coupling can have a slight influence on the resonance frequency via piezoelectric stiffening. This effect can be used for sensing, but is usually avoided. It is essential to have the electric and dielectric boundary conditions well under control. Grounding the front electrode (the electrode in contact with the sample) is one option. A π-network sometimes is employed for the same reason. A π-network is an arrangement of resistors, which almost short-circuit the two electrodes. This makes the device less susceptible to electrical perturbations.

    Shear Waves Decay in Liquids and Gases

    Most acoustic-wave-based sensors employ shear (transverse) waves. Shear waves decay rapidly in liquid and gaseous environments. Compressional (longitudinal) waves would be radiated into the bulk and potentially be reflected back to the crystal from the opposing cell wall. Such reflections are avoided with transverse waves. The range of penetration of a 5 MHz-shear wave in water is 250 nm. This finite penetration depth renders the QCM surface-specific. Also, liquids and gases have a rather small shear-acoustic impedance and therefore only weakly damp the oscillation. The exceptionally high Q-factors of acoustic resonators are linked to their weak coupling to the environment.

    Modes of Operation

    Economic ways of driving a QCM make use of oscillator circuits. Oscillator circuits are also widely employed in time and frequency control applications, where the oscillator serves as a clock. Other modes of operation are impedance analysis and ring-down. In impedance analysis, the electric conductance as a function of driving frequency is determined by means of a network analyzer. By fitting a resonance curve to the conductance curve, one obtains the frequency and bandwidth of the resonance as fit parameters. In ring-down, one measures the voltage between the electrodes after the exciting voltage has suddenly been turned off. The resonator emits a decaying sine wave, where the resonance parameters are extracted from the period of oscillation and the decay rate.

    Energy Trapping

    The electrodes at the front and the back of the crystal usually are key-hole shaped, thereby making the resonator thicker in the center than at the rim. This confines the displacement field to the center of the crystal by a mechanism called energy trapping. The crystal turns into an acoustic lens and the wave is focused to the center of the crystal. Energy trapping is necessary in order to be able to mount the crystal at the edge without excessive damping. Energy trapping slightly distorts the otherwise planar wave fronts. The deviation from the plane thickness-shear mode entails flexural contribution to the displacement pattern. Flexural waves emit compressional waves into the adjacent medium, which is a problem when operating the crystal in a liquid environment.

    Overtones

    Planar resonators can be operated at a number of overtones, typically indexed by the number of nodal planes parallel to the crystal surfaces. Only odd harmonics can be excited electrically because only these induce charges of opposite sign at the two crystal surfaces. Overtones are to be distinguished from anharmonic side bands (spurious modes), which have nodal planes perpendicular to the plane of the resonator. The best agreement between theory and experiment is reached with planar, optically polished crystals for overtone orders between n = 5 and n = 13. On low harmonics, energy trapping is insufficient, while on high harmonics, anharmonic side bands interfere with the main resonance.

    Amplitude of Motion

    The amplitude of lateral displacement rarely exceeds a nanometer. More specifically one has

    u_0=\frac 4{\left( n\pi \right) ^2}dQU_{\mathrm{el}}

    with u0 the amplitude of lateral displacement, n the overtone order, d the piezoelectric strain coefficient, Q the quality factor, and Uel the amplitude of electrical driving. The piezoelectric strain coefficient is given as d = 3.1·10‑12 m/V for AT-cut quartz crystals. Due to the small amplitude, stress and strain usually are proportional to each other. The QCM operates in the range of linear acoustics.

    Effects of Temperature and Stress

    The resonance frequency of acoustic resonators depends on temperature, pressure, and bending stress. Temperature-frequency coupling is minimized by employing special crystal cuts. A widely used temperature-compensated cut of quartz is the AT-cut. Careful control of temperature and stress is essential in the operation of the QCM.

    AT-cut crystals are singularly rotated Y-axis cuts in which the top and bottom half of the crystal move in opposite directions (thickness shear vibration) during oscillation. The AT-cut crystal is easily manufactured. However, it has limitations at high and low temperature, as it is easily disrupted by internal stresses caused by temperature gradients in these temperature extremes (relative to room temperature, ~25 °C). These internal stress points produce undesirable frequency shifts in the crystal, decreasing its accuracy. The relationship between temperature and frequency is cubic. The cubic relationship has an inflection point near room temperature. As a consequence the AT-cut quartz crystal is most effective when operating at or near room temperature. For applications which are above room temperature, water cooling is often helpful.

    Stress-compensated (SC) crystals are available with a doubly-rotated cut that minimizes the frequency changes due to temperature gradients when the system is operating at high temperatures, and reduces the reliance on water cooling. SC-cut crystals have an inflection point of ~92 °C. In addition to their high temperature inflection point, they also have a smoother cubic relationship and are less affected by temperature deviations from the inflection point. However, due to the more difficult manufacturing process, they are more expensive and are not widely commercially available.

    Electrochemical QCM

    The QCM can be combined with other surface-analytical instruments. The electrochemical QCM (EQCM) is particularly advanced. Using the EQCM, one determines the ratio of mass deposited at the electrode surface during an electrochemical reaction to the total charge passed through the electrode. This ratio is called the current efficiency.

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Electronics Science Fair Projects and Experiments
    Electronics Circuits and Schematics
    Science Fair Projects Resources
    Electronics Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin