Julian's Science Fair
  • Arts
  • History
  • Biography
  • Geography
  • Society
  • Literature
  • Government
  • Philosophy
  • Education
  • Home Social Sciences Fair Projects Social Scientists Bible Jokes Science Jokes
       

    Bird Migration
    K-12 Lesson Plans, Class Activities & Background Information
    For Primary, Elementary, Middle and High School Students and Teachers







    Bird Migration Lesson Plans

    Bird Migration Background Information

    Definition

    Bird migration is the regular seasonal journey undertaken by many species of birds. Bird movements include those made in response to changes in food availability, habitat or weather.

    Migratory Birds

    Sometimes, journeys are not termed "true migration" because they are irregular (nomadism, invasions, irruptions) or in only one direction (dispersal, movement of young away from natal area). Migration is marked by its annual seasonality. In contrast, birds that are non-migratory are said to be resident or sedentary. Approximately 1800 of the world's 10,000 bird species are long-distance migrants.

    Many bird populations migrate long distances along a flyway. The most common pattern involves flying north in the spring to breed in the temperate or Arctic summer and returning in the autumn to wintering grounds in warmer regions to the south. Of course, in the Southern Hemisphere the directions are reversed, but there is less land area in the far South to support long-distance migration.

    The primary motivation for migration appears to be food; for example, some hummingbirds choose not to migrate if fed through the winter. Also, the longer days of the northern summer provide extended time for breeding birds to feed their young. This helps diurnal birds to produce larger clutches than related non-migratory species that remain in the tropics. As the days shorten in autumn, the birds return to warmer regions where the available food supply varies little with the season.

    Within a species not all populations may be migratory; this is known as "partial migration". Partial migration is very common in the southern continents; in Australia, 44% of non-passerine birds and 32% of passerine species are partially migratory. In some species, the population at higher latitudes tends to be migratory and will often winter at lower latitude. The migrating birds bypass the latitudes where other populations may be sedentary, where suitable wintering habitats may already be occupied.

    Most migrations begin with the birds starting off in a broad front. Often, this front narrows into one or more preferred routes termed flyways. These routes typically follow mountain ranges or coastlines, sometimes rivers, and may take advantage of updrafts and other wind patterns or avoid geographical barriers such as large stretches of open water. The specific routes may be genetically programmed or learned to varying degrees. The routes taken on forward and return migration are often different. A common pattern in North America is clockwise migration, where birds flying North tend to be further West, and flying South tend to shift Eastwards.

    Many, if not most, birds migrate in flocks. For larger birds, flying in flocks reduces the energy cost. Geese in a V-formation may conserve 12–20 % of the energy they would need to fly alone. Red Knots Calidris canutus and Dunlins Calidris alpina were found in radar studies to fly 5 km per hour faster in flocks than when they were flying alone.

    Bird migration is not limited to birds that can fly. Most species of penguin migrate by swimming. These routes can cover over 1000 km. Blue Grouse Dendragapus obscurus perform altitudinal migration mostly by walking. Emus in Australia have been observed to undertake long-distance movements on foot during droughts.

    The earliest recorded observations of bird migration were 3000 years ago, as noted by Hesiod, Homer, Herodotus, Aristotle and others. The Bible also notes migrations, as in the Book of Job (39:26), where the inquiry is made: "Doth the hawk fly by Thy wisdom and stretch her wings toward the south?" The author of Jeremiah (8:7) wrote: "The stork in the heavens knoweth her appointed time; and the turtledove, and the crane, and the swallow, observe the time of their coming."

    Long-distance migration: The typical image of migration is of northern landbirds, such as swallows and birds of prey, making long flights to the tropics. Many northern-breeding ducks, geese and swans are also long-distance migrants, but need only to move from their Arctic breeding grounds far enough south to escape frozen waters. Most Holarctic wildfowl species remain in the Northern Hemisphere, but in countries with milder climates. For example, the pink-footed goose migrates from Iceland to Britain and neighbouring countries. Migratory routes and wintering grounds are traditional and learned by young during their first migration with their parents. Some ducks, such as the Garganey, move completely or partially into the tropics.

    Many long-distance migrants appear to be genetically programmed to respond to changing day length. Species that move short distances, however, may not need such a timing mechanism, and may move in response to local weather conditions.

    Altitudinal migration is common on mountains worldwide, such as in the Himalayas and the Andes. Quite often, altitudinal migration is combined with distance migration; for example, the Himalayan Kashmir Flycatcher and Pied Thrush both move as far south as the highlands of Sri Lanka. Altitudinal migration may even be important to birds living on relatively small islands, such as the Hawaiian Islands, which have high mountains.

    The control of migration, its timing and response are genetically controlled and appear to be a primitive trait that is present even in non-migratory species of birds. The ability to navigate and orient themselves during migration is a much more complex phenomenon that may include both endogenous programs as well as learning.

    The primary physiological cue for migration are the changes in the day length. These changes are also related to hormonal changes in the birds.

    Navigation is based on a variety of senses. Many birds have been shown to use a sun compass. Using the sun for direction involves the need for making compensation based on the time. Navigation has also been shown to be based on a combination of other abilities including the ability to detect magnetic fields (magnetoception), use visual landmarks as well as olfactory cues.

    Migrating birds can lose their way and occur outside their normal ranges. These can be due to flying past their destinations as in the "spring overshoot" in which birds returning to their breeding areas overshoot and end up further north than intended. Reverse migration, where the genetic programming of young birds fails to work properly, can lead to great rarities turning up as vagrants thousands of kilometres out of range. Certain areas, because of their location, have become famous as watchpoints for migrating birds. Examples are the Point Pelee National Park in Canada, and Spurn in England. Drift migration of birds blown off course by the wind can result in "falls" of large numbers of migrants at coastal sites.

    Birds need to alter their metabolism in order to meet the demands of migration. The storage of energy through the accumulation of fat and the control of sleep in nocturnal migrants require special physiological adaptations. In addition, the feathers of a bird suffer from wear-and-tear and require to be molted. The timing of this molt - usually once a year but sometimes two - varies with some species molting prior to moving to their winter grounds and others molting prior to returning to their breeding grounds. Apart from physiological adaptations, migration sometimes requires behavioural changes such as flying in flocks to reduce the energy used in migration or the risk of predation.

    Large scale climatic changes, as have been experienced in the past, are expected to have an effect on the timing of migration. Studies have shown a variety of effects including timing changes in migration, breeding as well as population variations.

    For more information: http://en.wikipedia.org/wiki/Bird_migration

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)




    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright © 2003-2013 Julian Rubin