Definition
Moore's law describes a long-term trend in the history of computing hardware, in which the number of transistors that can be placed inexpensively on an integrated circuit has doubled approximately every two years.
Basics
The capabilities of many digital electronic devices are strongly linked to Moore's law: processing speed, memory capacity, sensors and even the number and size of pixels in digital cameras. All of these are improving at (roughly) exponential rates as well.This has dramatically increased the usefulness of digital electronics in nearly every segment of the world economy. Moore's law precisely describes a driving force of technological and social change in the late 20th and early 21st centuries. The trend has continued for more than half a century and is not expected to stop until 2015 or later.
The law is named after Intel co-founder Gordon E. Moore, who introduced the concept in a 1965 paper. It has since been used in the semiconductor industry to guide long-term planning and to set targets for research and development.
History:
The term Moore's law was coined around 1970 by the Caltech professor, VLSI pioneer, and entrepreneur Carver Mead. Predictions of similar increases in computer power had existed years prior. Alan Turing in a 1950 paper had predicted that by the turn of the millennium, computers would have a billion words of memory. Moore may have heard Douglas Engelbart, a co-inventor of today's mechanical computer mouse, discuss the projected downscaling of integrated circuit size in a 1960 lecture. A New York Times article published August 31, 2009, credits Engelbart as having made the prediction in 1959.
Moore's original statement that transistor counts had doubled every year can be found in his publication "Cramming more components onto integrated circuits", Electronics Magazine 19 April 1965:
The complexity for minimum component costs has increased at a rate of roughly a factor of two per year... Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.
Moore slightly altered the formulation of the law over time, bolstering the perceived accuracy of Moore's law in retrospect. Most notably, in 1975, Moore altered his projection to a doubling every two years (the original was doubling every one year). Despite popular misconception, he is adamant that he did not predict a doubling "every 18 months".
In April 2005, Intel offered US$10,000 to purchase a copy of the original Electronics Magazine. David Clark, an engineer living in the United Kingdom, was the first to find a copy and offer it to Intel.
As a target for industry and a self-fulfilling prophecy: Although Moore's law was initially made in the form of an observation and forecast, the more widely it became accepted, the more it served as a goal for an entire industry. This drove both marketing and engineering departments of semiconductor manufacturers to focus enormous energy aiming for the specified increase in processing power that it was presumed one or more of their competitors would soon actually attain. In this regard, it can be viewed as a self-fulfilling prophecy.
Relation to manufacturing costs: As the cost of computer power to the consumer falls, the cost for producers to fulfill Moore's law follows an opposite trend: R&D, manufacturing, and test costs have increased steadily with each new generation of chips. Rising manufacturing costs are an important consideration for the sustaining of Moore's law. This had led to the formulation of "Moore's second law", which is that the capital cost of a semiconductor fab also increases exponentially over time.
Future trends: Computer industry technology "road maps" predict (as of 2001) that Moore's law will continue for several chip generations. Depending on and after the doubling time used in the calculations, this could mean up to a hundredfold increase in transistor count per chip within a decade. The semiconductor industry technology roadmap uses a three-year doubling time for microprocessors, leading to a tenfold increase in the next decade. Intel was reported in 2005 as stating that the downsizing of silicon chips with good economics can continue during the next decade and in 2008 as predicting the trend through 2029. Some of the new directions in research that may allow Moore's law to continue are:
- Researchers from IBM and Georgia Tech created a new speed record when they ran a silicon/germanium helium supercooled transistor at 500 gigahertz (GHz). The transistor operated above 500 GHz at 4.5 K (−451 °F/−268.65 °C) and simulations showed that it could likely run at 1 THz (1,000 GHz). However, this trial only tested a single transistor.
- In early 2006, IBM researchers announced that they had developed a technique to print circuitry only 29.9 nm wide using deep-ultraviolet (DUV, 193-nanometer) optical lithography. IBM claims that this technique may allow chipmakers to use then-current methods for seven more years while continuing to achieve results forecast by Moore's law. New methods that can achieve smaller circuits are expected to be substantially more expensive.
- In April 2008, researchers at HP Labs announced the creation of a working "memristor": a fourth basic passive circuit element whose existence had previously only been theorized. The memristor's unique properties allow for the creation of smaller and better-performing electronic devices. This memristor bears some resemblance to resistive memory (CBRAM or RRAM) developed independently and recently by other groups for non-volatile memory applications.
Ultimate limits of the law: On 13 April 2005, Gordon Moore stated in an interview that the law cannot be sustained indefinitely: "It can't continue forever. The nature of exponentials is that you push them out and eventually disaster happens." He also noted that transistors would eventually reach the limits of miniaturization at atomic levels.
In January 1995, the Digital Alpha 21164 microprocessor had 9.3 million transistors. This 64-bit processor was a technological spearhead at the time, even if the circuit’s market share remained average. Six years later, a state of the art microprocessor contained more than 40 million transistors. It is theorised that with further miniaturisation, by 2015 these processors should contain more than 15 billion transistors, and by 2020 will be in molecular scale production, where each molecule can be individually positioned.
In 2003 Intel predicted the end would come between 2013 and 2018 with 16 nanometer manufacturing processes and 5 nanometer gates, due to quantum tunnelling, although others suggested chips could just get bigger, or become layered. In 2008 it was noted that for the last 30 years it has been predicted that Moore's law would last at least another decade.
Some see the limits of the law as being far in the distant future. Lawrence Krauss and Glenn D. Starkman announced an ultimate limit of around 600 years in their paper, based on rigorous estimation of total information-processing capacity of any system in the Universe.
Then again, the law has often met obstacles that first appeared insurmountable but were indeed surmounted before long. In that sense, Moore says he now sees his law as more beautiful than he had realized: "Moore's law is a violation of Murphy's law. Everything gets better and better."
Consequences and limitations
Software: breaking the law: A sometimes misunderstood point is that exponentially improved hardware does not necessarily imply exponentially improved software performance to go with it. The productivity of software developers most assuredly does not increase exponentially with the improvement in hardware, but by most measures has increased only slowly and fitfully over the decades. Software tends to get larger and more complicated over time, and Wirth's law even states humorously that "Software gets slower faster than hardware gets faster".
Transistor count versus computing performance: The exponential processor transistor growth predicted by Moore does not always translate into exponentially greater practical CPU performance. For example, the higher transistor density in multi-core CPUs doesn't greatly increase speed on many consumer applications that are not parallelized. There are cases where a roughly 45% increase in processor transistors have translated to roughly 10–20% increase in processing power. Viewed even more broadly, the speed of a system is often limited by factors other than processor speed, such as internal bandwidth and storage speed, and one can judge a system's overall performance based on factors other than speed, like cost efficiency or electrical efficiency.
Importance of non-CPU bottlenecks As CPU speeds and memory capacities have increased exponentially, other aspects of performance like memory and disk access speeds have failed to keep up. As a result, those access latencies are more and more often a bottleneck in system performance, and high-performance hardware and software have to be designed to reduce their impact.
Parallelism and Moore's law: Parallel computation has recently become necessary to take full advantage of the gains allowed by Moore's law. For years, processor makers consistently delivered increases in clock rates and instruction-level parallelism, so that single-threaded code executed faster on newer processors with no modification. Now, to manage CPU power dissipation, processor makers favor multi-core chip designs, and software has to be written in a multi-threaded or multi-process manner to take full advantage of the hardware.
Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)
|