Julian's Science Experiments
  • Famous Experiments and Inventions
  • The Scientific Method
  • Home Botany Experiments Botany Science Fair Projects Photosynthesis Fair Projects Resources Books Warning!

    Seeds & Germination
    K-12 Experiments & Background Information
    For Science Labs, Lesson Plans, Class Activities & Science Fair Projects
    For Primary, Elementary, Middle and High School Students & Teachers


    Seed & Germination Experiments

    Seeds & Germination Background Information

    Definitions

    A seed is a small embryonic plant enclosed in a covering called the seed coat, usually with some stored food. It is the product of the ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the mother plant.

    Germination is the process in which a seed or spore emerges from a period of dormancy.

    Basics

    A seed is the part of a plant that can grow into a new plant. It is a reproductive structure which disperses, and can survive for some time. A typical seed includes three basic parts: (1) an embryo, (2) a supply of nutrients for the embryo, and (3) a seed coat.

    There are many different kinds of seeds. Some plants make a lot of seeds, some make only a few. Seeds are often hard and very small, but some are larger. The coconut is as big as a child's head, but it contains more than just a seed. A seed needs water, air and warmth but not sunlight to germinate (become a seedling).

    Because most kinds of seeds carry the food that helps the new plant begin to grow, many kinds of seeds are good food for animals and people. Seeds are often inside fruits. The many kinds of grain that people grow, such as rice, wheat, and maize, are all seeds.

    Origin and evolution: Seeds have been an important development in the reproduction and spread of flowering plants, relative to more primitive plants like mosses, ferns and liverworts, which do not have seeds and use other means to propagate themselves. This can be seen by the success of seed plants (both gymnosperms and angiosperms) in dominating biological niches on land, from forests to grasslands both in hot and cold climates.

    Seeds have been an important development in the reproduction and spread of flowering plants, relative to more primitive plants like mosses, ferns and liverworts, which do not have seeds and use other means to propagate themselves. This can be seen by the success of seed plants (both gymnosperms and angiosperms) in dominating biological niches on land, from forests to grasslands both in hot and cold climates.

    Gymnosperms have naked seeds (that's what the word means), whereas Angiosperms have covered seeds, namely, fruits. This is a further evolutionary advance.

    The origin of seeds was probably in the middle Devonian. As with modern ferns, most land plants before this time reproduced by sending spores into the air. The spores would land and become new plants only in favourable conditions. Spores have little food stored, and may be just single cells rather than embryos. The first true seeds are from the upper Devonian, which is probably the theatre of their first evolutionary radiation. The seed plants progressively became one of the major elements of nearly all ecosystems.

    Topics of Interest

    The formation of the seed completes the process of reproduction in seed plants (started with the development of flowers and pollination), with the embryo developed from the zygote and the seed coat from the integuments of the ovule.

    Seeds have been an important development in the reproduction and spread of flowering plants, relative to more primitive plants like mosses, ferns and liverworts, which do not have seeds and use other means to propagate themselves. This can be seen by the success of seed plants (both gymnosperms and angiosperms) in dominating biological niches on land, from forests to grasslands both in hot and cold climates.

    The term seed also has a general meaning that predates the above anything that can be sown i.e. "seed" potatoes, "seeds" of corn or sunflower "seeds". In the case of sunflower and corn "seeds", what is sown is the seed enclosed in a shell or hull, and the potato is a tuber.

    Seed structure: A typical seed includes three basic parts: (1) an embryo, (2) a supply of nutrients for the embryo, and (3) a seed coat.

    The embryo is an immature plant from which a new plant will grow under proper conditions. The embryo has one cotyledon or seed leaf in monocotyledons, two cotyledons in almost all dicotyledons and two or more in gymnosperms. The radicle is the embryonic root. The plumule is the embryonic shoot. The embryonic stem above the point of attachment of the cotyledon(s) is the epicotyl. The embryonic stem below the point of attachment is the hypocotyl.

    Within the seed, there usually is a store of nutrients for the seedling that will grow from the embryo. The form of the stored nutrition varies depending on the kind of plant. In angiosperms, the stored food begins as a tissue called the endosperm, which is derived from the parent plant via double fertilization. The usually triploid endosperm is rich in oil or starch and protein. In gymnosperms, such as conifers, the food storage tissue is part of the female gametophyte, a haploid tissue. In some species, the embryo is embedded in the endosperm or female gametophyte, which the seedling will use upon germination. In others, the endosperm is absorbed by the embryo as the latter grows within the developing seed, and the cotyledons of the embryo become filled with this stored food. At maturity, seeds of these species have no endosperm and are termed exalbuminous seeds. Some exalbuminous seeds are bean, pea, oak, walnut, squash, sunflower, and radish. Seeds with an endosperm at maturity are termed albuminous seeds. Most monocots (e.g. grasses and palms) and many dicots (e.g. brazil nut and castor bean) have albuminous seeds. All gymnosperm seeds are albuminous.

    The seed coat (or testa) develops from the tissue, the integument, originally surrounding the ovule. The seed coat in the mature seed can be a paper-thin layer (e.g. peanut) or something more substantial (e.g. thick and hard in honey locust and coconut). The seed coat helps protect the embryo from mechanical injury and from drying out.

    In addition to the three basic seed parts, some seeds have an appendage on the seed coat such an aril (as in yew and nutmeg) or an elaiosome (as in Corydalis) or hairs (as in cotton). There may also be a scar on the seed coat, called the hilum; it is where the seed was attached to the ovary wall by the funiculus.

    Kinds of seeds: Many structures commonly referred to as "seeds" are actually dry fruits. Sunflower seeds are sold commercially while still enclosed within the hard wall of the fruit, which must be split open to reach the seed. Different groups of plants have other modifications, the so-called stone fruits (such as the peach) have a hardened fruit layer ( the endocarp) fused to and surrounding the actual seed. Nuts are the one-seeded, hard shelled fruit, of some plants, with an indehiscent seed, such as an acorn or hazelnut.

    Seed development: The seed, which is an embryo with two points of growth (one of which forms the stems the other the roots) is enclosed in a seed coat with some food reserves. Angiosperm seeds consist of three genetically distinct constituents: (1) the embryo formed from the zygote, (2) the endosperm, which is normally triploid, (3) the seed coat from tissue derived from the maternal tissue of the ovule. In angiosperms, the process of seed development begins with double fertilization and involves the fusion of the egg and sperm nuclei into a zygote. The second part of this process is the fusion of the polar nuclei with a second sperm cell nucleus, thus forming a primary endosperm. Right after fertilization, the zygote is mostly inactive but the primary endosperm divides rapidly to form the endosperm tissue. This tissue becomes the food that the young plant will consume until the roots have developed after germination or it develops into a hard seed coat. The seed coat forms from the two integuments or outer layers of cells of the ovule, which derive from tissue from the mother plant, the inner integument forms the tegmen and the outer forms the testa. When the seed coat forms from only one layer it is also called the testa, though not all such testa are homologous from one species to the next.

    Seed size and seed set: Seeds are very diverse in size. The dust-like orchid seeds are the smallest with about one million seeds per gram, they are often embryonic seeds with immature embryos and no significant energy reserves. Orchids and a few other groups of plants are myco-heterotrophs which depend on mycorrhizal fungi for nutrition during germination and the early growth of the seedling. Some terrestrial Orchid seedlings, in fact, spend the first few years of their life deriving energy from the fungus and do not produce green leaves. At over 20 kg, the largest seed is the coco de mer. Plants that produce smaller seeds can generate many more seeds per flower, while plants with larger seeds invest more resources into those seeds and normally produce fewer seeds. Small seeds are quicker to ripen and can be dispersed sooner, so fall blooming plants often have small seeds. Many annual plants produce great quantities of smaller seeds; this helps to ensure that at least a few will end in a favorable place for growth. Herbaceous perennials and woody plants often have larger seeds, they can produce seeds over many years, and larger seeds have more energy reserves for germination and seedling growth and produce larger, more established seedlings after germination.

    Seed functions: Seeds serve several functions for the plants that produce them. Key among these functions are nourishment of the embryo, dispersal to a new location, and dormancy during unfavorable conditions. Seeds fundamentally are a means of reproduction and most seeds are the product of sexual reproduction which produces a remixing of genetic material and phenotype variability that natural selection acts on.

    Seed dormancy is a condition of plant seeds that prevents germinating under optimal environmental conditions. Living, non dormant seeds, germinate when soil temperatures and moisture conditions are suited for cellular processes and division, dormant seeds do not.

    One important function of most seeds is delayed germination, which allows time for dispersal and prevents germination of all the seeds at same time. The staggering of germination safeguards some seeds and seedlings from suffering damage or death from short periods of bad weather or from transient herbivores; it also allows some seeds to germinate when competition from other plants for light and water might be less intense. Another form of delayed seed germination is seed quiescence, which is different than true seed dormancy and occurs when a seed fails to germinate because the external environmental conditions are too dry or warm or cold for germination. Many species of plants have seeds that delay germination for many months or years, and some seeds can remain in the soil seed bank for more than 50 years before germination. Some seeds have a very long viability period, and the oldest documented germinating seed was nearly 2000 years old based on radiocarbon dating.

    Seed hibernation is different from seed dormancy. While seed dormancy can be defined as "a seed not germinating when conditions, e.g. light, water/nutrient availability or the presence of activating substances like smoke, are favourable", hibernation is the ability of a seed to remain in hibernation when there is a lack of things essential to its development (water, sunlight, nutrients, etc.) or in harsh conditions (extreme cold, extreme heat, hard ground, etc.). There is no specific time limit in which a seed may hibernate; some seeds found in the Arctic grew after an estimated 10,000 years. When conditions are right for the particular type of seed, they can come out of hibernation and grow.

    A seedling is a young plant sporophyte developing out of a plant embryo from a seed. Seedling development starts with germination of the seed. A typical young seedling consists of three main parts: the radicle (embryonic root), the hypocotyl (embryonic shoot), and the cotyledons (seed leaves). The two classes of flowering plants are distinguished by their numbers of seed leaves: Monocotyledons (monocots) have one blade-shaped cotyledon, whereas dicotyledons (dicots) have two round cotyledons. Gymnosperms are more varied. For example, pine seedlings have up to eight cotyledons. The seedlings of some flowering plants have no cotyledons at all. These are said to be acotyledons.

    Origin and evolution: The origin of seed plants is a problem that still remains unsolved. However, more and more data tends to place this origin in the middle Devonian. The description in 2004 of the proto-seed Runcaria heinzelinii in the Givetian of Belgium is an indication of that ancient origin of seed-plants. As with modern ferns, most land plants before this time reproduced by sending spores into the air, that would land and become whole new plants. The first "true" seeds are described from the upper Devonian, which is probably the theater of their true first evolutionary radiation. The seed plants progressively became one of the major elements of nearly all ecosystems.

    Edible seeds: Many seeds are edible and the majority of human calories comes from seeds, especially from cereals, legumes and nuts. Seeds also provide most cooking oils, many beverages and spices and some important food additives. In different seeds the seed embryo or the endosperm dominates and provides most of the nutrients. The storage proteins of the embryo and endosperm differ in their amino acid content and physical properties. For example the gluten of wheat, important in providing the elastic property to bread dough is strictly an endosperm protein.

    Poison and food safety: While some seeds are edible, others are harmful, poisonous or deadly. Plants and seeds often contain chemical compounds to discourage herbivores and seed predators. In some cases, these compounds simply taste bad (such as in mustard), but other compounds are toxic or break down into toxic compounds within the digestive system. Children, being smaller than adults, are more susceptible to poisoning by plants and seeds.


    Germination is the process in which a seed or spore emerges from a period of dormancy. The most common example of germination is the sprouting of a seedling from a seed of an angiosperm or gymnosperm. However the growth of a sporeling from a spore, for example the growth of hyphae from fungal spores, is also germination. In a more general sense, germination can imply anything expanding into greater being from a small existence or germ.

    Germination is the growth of an embryonic plant contained within a seed; it results in the formation of the seedling. The seed of a higher plant is a small package produced in a fruit or cone after the union of male and female sex cells. All fully developed seeds contain an embryo and, in most plant species some store of food reserves, wrapped in a seed coat. Some plants produce varying numbers of seeds that lack embryos, these are called empty seeds, and never germinate. Most seeds go through a period of quiescence where there is no active growth; during this time the seed can be safely transported to a new location and/or survive adverse climate conditions until circumstances are favorable for growth. Quiescent seeds are ripe seeds that do not germinate because they are subject to external environmental conditions that prevent the initiation of metabolic processes and cell growth. Under favorable conditions, the seed begins to germinate and the embryonic tissues resume growth, developing towards a seedling.

    Requirements for seed germination: Seed germination depends on both internal and external conditions. The most important external factors include temperature, water, oxygen and sometimes light or darkness. Various plants require different variables for successful seed germination, often this depends on the individual seed variety and is closely linked to the ecological conditions of a plant's natural habitat. For some seeds, their future germination response is affected by environmental conditions during seed formation; most often these responses are types of seed dormancy.

    The germination rate describes how many seeds of a particular plant species, variety or seedlot are likely to germinate. It is usually expressed as a percentage, e.g., an 85% germination rate indicates that about 85 out of 100 seeds will probably germinate under proper conditions. The germination rate is useful for calculating the seed requirements for a given area or desired number of plants.

    Pollen germination: Another germination event during the life cycle of gymnosperms and flowering plants is the germination of a pollen grain after pollination. Like seeds, pollen grains are severely dehydrated before being released to facilitate their dispersal from one plant to another. They consist of a protective coat containing several cells (up to 8 in gymnosperms, 2-3 in flowering plants). One of these cells is a tube cell. Once the pollen grain lands on the stigma of a receptive flower (or a female cone in gymnosperms), it takes up water and germinates. Pollen germination is facilitated by hydration on the stigma, as well as by the structure and physiology of the stigma and style. Pollen can also be induced to germinate in vitro (in a petri dish or test tube).

    Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

    Useful Links
    Botany Resources
    Botany and Agriculture Science Fair Projects and Experiments
    General Science Fair Project Resources
    Botany Science Fair Projects Books

                  





    My Dog Kelly

    Follow Us On:
           

    Privacy Policy - Site Map - About Us - Letters to the Editor

    Comments and inquiries could be addressed to:
    webmaster@julianTrubin.com


    Last updated: June 2013
    Copyright 2003-2013 Julian Rubin